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Recall that 𝑒𝑎𝑖𝑡 = cos 𝑎𝑡 + 𝑖 sin 𝑎𝑡 . We will use this identity when solving systems of 

differential equations with constant coefficients in which the eigenvalues are complex. 

Example: Solve 𝐱′ =
3 −2
4 −1

𝐱.

Solution: Find the eigenvalues first. Starting with det
3 − 𝜆 −2

4 −1 − 𝜆
= 0, we get

𝜆2 − 2𝜆 + 5 = 0, which has roots 𝜆 =
− −2 ± −2 2−4(1)(5)

2(1)
= 1 ± 2𝑖.

We’ll get the eigenvectors next.



The eigenvector for 𝜆1 = 1 + 2𝑖 is
𝑎
𝑏

 such that
3 − (1 + 2𝑖) −2

4 −1 − (1 + 2𝑖)
𝑎
𝑏

=
0
0

.

This simplifies to
2 − 2𝑖 −2

4 −2 − 2𝑖

𝑎
𝑏

=
0
0

. The square matrix is singular (you verify). 

Multiplying the top row with
𝑎
𝑏

 gives 2 − 2𝑖 𝑎 − 2𝑏 = 0. If we let 𝑎 = 1, then 𝑏 = 1 − 𝑖. 

Thus, the eigenvector for 𝜆1 = 1 + 2𝑖 is 𝑣1 =
1

1 − 𝑖
.

The eigenvector for 𝜆2 = 1 − 2𝑖 is found in a similar way, and is 𝑣2 =
1

1 + 𝑖
.

The solution in complex form is 𝐱 𝑡 = 𝑐1
1

1 − 𝑖
𝑒 1+2𝑖 𝑡 + 𝑐2

1
1 + 𝑖

𝑒 1−2𝑖 𝑡.



Now we need to rewrite 𝐱 𝑡 = 𝑐1
1

1 − 𝑖
𝑒 1+2𝑖 𝑡 + 𝑐2

1
1 + 𝑖

𝑒 1−2𝑖 𝑡 in real form.

Look at the first term: 𝑐1
1

1 − 𝑖
𝑒 1+2𝑖 𝑡. 

Recall that 𝑒 1+2𝑖 𝑡 = 𝑒𝑡𝑒2𝑖𝑡 = 𝑒𝑡 cos 2𝑡 + 𝑖 sin 2𝑡 . Making replacements, we have

𝑐1
1

1 − 𝑖
𝑒 1+2𝑖 𝑡 = 𝑐1

1
1 − 𝑖

𝑒𝑡 cos 2𝑡 + 𝑖 sin 2𝑡 = 𝑐1𝑒𝑡 cos 2𝑡 + 𝑖 sin 2𝑡
1 − 𝑖 cos 2𝑡 + 𝑖 sin 2𝑡

.

Expand the second row by multiplication, and simplify:

𝑐1𝑒𝑡 cos 2𝑡 + 𝑖 sin 2𝑡

cos(2𝑡) + 𝑖 sin(2𝑡) − 𝑖 cos 2𝑡 − 𝑖2 sin 2𝑡
= 𝑐1𝑒𝑡 cos 2𝑡 + 𝑖 sin 2𝑡

cos(2𝑡) + sin(2𝑡) + 𝑖 sin(2𝑡) − cos 2𝑡
.

Doing the same with the second term, 𝑐2
1

1 + 𝑖
𝑒 1−2𝑖 𝑡, gives a scalar multiple of the first 

term. Once terms are combined and constants renamed, we end up with the same result. Thus, it 

is sufficient to perform this process just once, as we have done above.



From the last slide, we have 𝑐1𝑒𝑡 cos 2𝑡 + 𝑖 sin 2𝑡
cos(2𝑡) + sin(2𝑡) + 𝑖 sin(2𝑡) − cos 2𝑡

.

Now, “stack” the terms into two columns, one real and one imaginary:

𝑐1𝑒𝑡 cos(2𝑡) + 𝑖 sin 2𝑡

cos(2𝑡) + sin(2𝑡) + 𝑖 sin(2𝑡) − cos 2𝑡
.

Recall that if 𝑢 𝑡 + 𝑖𝑣(𝑡) are solutions of a homogeneous ODE, then so are 𝑢(𝑡) and 𝑣(𝑡). 

We can drop the imaginary coefficient now. The solution of 𝐱′ =
3 −2
4 −1

𝐱 is

𝐱 𝑡 = 𝑐1𝑒𝑡 cos(2𝑡)
cos(2𝑡) + sin(2𝑡)

+ 𝑐2𝑒𝑡 sin 2𝑡
sin(2𝑡) − cos 2𝑡

.

(Reminder: we’d get the same solution had we performed the tasks on the second term from the last slide.)



The solution of 𝐱′ =
3 −2
4 −1

𝐱 is

𝐱 𝑡 = 𝑐1𝑒𝑡 cos(2𝑡)
cos(2𝑡) + sin(2𝑡)

+ 𝑐2𝑒𝑡 sin 2𝑡
sin(2𝑡) − cos 2𝑡

.

We should check that the two vectors are linearly independent by checking its Wronskian:

𝑊 = det
𝑒𝑡 cos(2𝑡) 𝑒𝑡 sin 2𝑡

𝑒𝑡 cos 2𝑡 + sin 2𝑡 𝑒𝑡 sin 2𝑡 − cos 2𝑡
= 𝑒2𝑡 cos 2𝑡 sin 2𝑡 − cos 2𝑡 − 𝑒2𝑡 sin 2𝑡 cos 2𝑡 + sin 2𝑡

= 𝑒2𝑡 cos(2𝑡) sin(2𝑡) − 𝑒2𝑡 cos2 2𝑡 − 𝑒2𝑡 sin 2𝑡 cos 2𝑡 − 𝑒2𝑡 sin2 2𝑡
= −𝑒2𝑡 cos2 2𝑡 − 𝑒2𝑡 sin2 2𝑡 = −𝑒2𝑡 .

Since the Wronskian −𝑒2𝑡 is not zero, these are linearly independent solutions. 



Phase Portraits (Direction Field).

Phase portraits of a system of differential equations that has two complex conjugate roots tend 

to have a “spiral” shape. 

Assuming that the eigenvalues are of the form 𝜆 = 𝑎 ± 𝑏𝑖:

• If 𝑎 > 0, then the direction curves trend away from the origin asymptotically (as t grows to 

infinity). The origin is an unstable spiral point.

• If 𝑎 < 0, then the direction curves trend into from the origin asymptotically. The origin is a 

stable spiral point.

• If 𝑎 = 0, then the direction curves form concentric ellipses. The origin is a center.



The phase portrait for 𝐱′ =
3 −2
4 −1

𝐱 is:

The eigenvalues are 𝜆 = 1 ± 2𝑖. 

Since a > 0, the direction lines flow 

away from the origin.



The phase portrait for 𝐱′ =
−1 −1
2 −1

𝐱 is:

The eigenvalues are 𝜆 = −1 ± 2𝑖. 

Since a < 0, the direction lines flow 

into from the origin.

Compare this direction field to the

one on the previous slide. Do you

see the outward and inward effect

between the two?



The phase portrait for 𝐱′ =
0 −2
4 0

𝐱 is:

The eigenvalues are 𝜆 = ±2 2𝑖. 

Since a = 0, the direction lines form ellipses.
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