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Let 𝑥1(𝑡) and 𝑥2(𝑡) be two functions. A system of differential equations can have the form

𝑥1
′ 𝑡 = 𝑎1𝑥1 𝑡 + 𝑏1𝑥2(𝑡)

𝑥2
′ 𝑡 = 𝑎2𝑥1 𝑡 + 𝑏2𝑥2 𝑡

where 𝑎1, 𝑏1, 𝑎2 and 𝑏2 are constants. This is an example of a linear system of ODEs with 

constant coefficients.

Written as an equation using matrices, we have
𝑥1

′ 𝑡

𝑥2
′ 𝑡

𝐱′(𝑡)

=
𝑎1 𝑏1

𝑎2 𝑏2

𝐴

𝑥1 𝑡

𝑥2 𝑡
𝐱(𝑡)

.

Such systems are written (short-hand) as 𝐱′ = 𝐴𝐱. It is first-order, linear and homogeneous.

The general solution is of the form 𝐱 𝑡 = 𝑐1𝑣1𝑒𝜆1𝑡 + 𝑐2𝑣2𝑒𝜆2𝑡, where 𝜆1 and 𝜆2 are the 

eigenvalues of 𝐴, and 𝑣1 and 𝑣2 are their eigenvectors, respectively.



Example: Solve 𝑦′′ − 2𝑦′ − 15𝑦 = 0 by first rewriting this second-order linear ODE as a 

first-order linear ODE in matrix form.

Solution: First, rename the variables: let 𝑥1 𝑡 = 𝑦 and 𝑥2 𝑡 = 𝑥1
′ (𝑡) = 𝑦′. Note that 

𝑥2
′ 𝑡 = 𝑦′′. So now we have two equations:

𝑥1
′ 𝑡 = 𝑥2(𝑡)

𝑥2
′ 𝑡 − 2𝑥2 𝑡 − 15𝑥1 𝑡 = 0

Isolate the two derivatives to the left side:

𝑥1
′ 𝑡 =  𝑥2 𝑡

𝑥2
′ 𝑡 = 15𝑥1 𝑡 + 2𝑥2(𝑡)

In matrix form, this is 
𝑥1

′ 𝑡

𝑥2
′ 𝑡

=
0 1

15 2

𝑥1 𝑡

𝑥2 𝑡
.



We will use eigenvalues and eigenvectors to solve the system 
𝑥1

′ 𝑡

𝑥2
′ 𝑡

=
0 1

15 2

𝑥1 𝑡

𝑥2 𝑡
.

First, find the eigenvalues of A:  

Start with det
0 − 𝜆 1

15 2 − 𝜆
= 0, which initially gives −𝜆 2 − 𝜆 − 15 = 0.

This simplifies to 𝜆2 − 2𝜆 − 15 = 0, which factors as 𝜆 − 5 𝜆 + 3 = 0.

Thus, the two eigenvalues are 𝜆1 = 5 and 𝜆2 = −3.

The eigenvectors are:

For 𝜆1 = 5: we have 
−5 1
15 −3

𝑎
𝑏

=
0
0

→ −5𝑎 + 𝑏 = 0 →
let 𝑎 = 1
so 𝑏 = 5

→ 𝑣1 =
1
5

.

For 𝜆2 = −3: we have 
3 1

15 5

𝑎
𝑏

=
0
0

→ 3𝑎 + 𝑏 = 0 →
let 𝑎 = 1

so 𝑏 = −3
→ 𝑣2 =

1
−3

.



The general solution is written in the form 𝐱 𝑡 = 𝑐1𝑣1𝑒𝜆1𝑡 + 𝑐2𝑣2𝑒𝜆2𝑡.

Thus, the solution of 
𝑥1

′ 𝑡

𝑥2
′ 𝑡

=
0 1

15 2

𝑥1 𝑡

𝑥2 𝑡
 is 

𝐱 𝑡 = 𝑐1
1
5

𝑒5𝑡 + 𝑐2
1

−3
𝑒−3𝑡 .

Written in matrix form, this is 𝐱 𝑡 =
𝑥1 𝑡

𝑥2 𝑡
=

𝑐1𝑒5𝑡 + 𝑐2𝑒−3𝑡

5𝑐1𝑒5𝑡 − 3𝑐2𝑒−3𝑡 .

Recall that we defined 𝑥1 𝑡 = 𝑦 and 𝑥2 𝑡 = 𝑥1′(𝑡) = 𝑦′. Look carefully and you’ll see that 

the first row is 𝑥1 𝑡 = 𝑐1𝑒5𝑡 + 𝑐2𝑒−3𝑡 and the second row is 𝑥2 𝑡 = 5𝑐1𝑒5𝑡 − 3𝑐2𝑒−3𝑡, 

which is the derivative of the first row.

We’ll check that this is the correct general solution on the next slide.



Check: The solution of 
𝑥1

′ 𝑡

𝑥2
′ 𝑡

=
0 1

15 2

𝑥1 𝑡

𝑥2 𝑡
 is 𝐱 𝑡 =

𝑥1 𝑡

𝑥2 𝑡
=

𝑐1𝑒5𝑡 + 𝑐2𝑒−3𝑡

5𝑐1𝑒5𝑡 − 3𝑐2𝑒−3𝑡 .

The derivative of 𝐱 𝑡  is 𝐱′ 𝑡 =
5𝑐1𝑒5𝑡 − 3𝑐2𝑒−3𝑡

25𝑐1𝑒5𝑡 + 9𝑐2𝑒−3𝑡 .

Thus, we have 
5𝑐1𝑒5𝑡 − 3𝑐2𝑒−3𝑡

25𝑐1𝑒5𝑡 + 9𝑐2𝑒−3𝑡 =
0 1

15 2

𝑐1𝑒5𝑡 + 𝑐2𝑒−3𝑡

5𝑐1𝑒5𝑡 − 3𝑐2𝑒−3𝑡 .

Multiply the right side. Note that the matrix 
𝑐1𝑒5𝑡 + 𝑐2𝑒−3𝑡

5𝑐1𝑒5𝑡 − 3𝑐2𝑒−3𝑡  is of size 2 × 1.

The first row 0 1  multiplied by 
𝑐1𝑒5𝑡 + 𝑐2𝑒−3𝑡

5𝑐1𝑒5𝑡 − 3𝑐2𝑒−3𝑡  gives 

0 𝑐1𝑒5𝑡 + 𝑐2𝑒−3𝑡 + 1 5𝑐1𝑒5𝑡 − 3𝑐2𝑒−3𝑡 = 5𝑐1𝑒5𝑡 − 3𝑐2𝑒−3𝑡 .



The second row 15 2  multiplied by 
𝑐1𝑒5𝑡 + 𝑐2𝑒−3𝑡

5𝑐1𝑒5𝑡 − 3𝑐2𝑒−3𝑡  gives 

15 𝑐1𝑒5𝑡 + 𝑐2𝑒−3𝑡 + 2 5𝑐1𝑒5𝑡 − 3𝑐2𝑒−3𝑡

= 15𝑐1𝑒5𝑡 + 15𝑐2𝑒−3𝑡 + 10𝑐1𝑒5𝑡 − 6𝑐2𝑒−3𝑡

This simplifies to 25𝑐1𝑒5𝑡 + 9𝑐2𝑒−3𝑡 .

This expression and the one at the bottom of the last slide are exactly the elements of 𝐱′ 𝑡 .

Thus, 𝐱 𝑡 =
𝑥1 𝑡

𝑥2 𝑡
= 𝑐1

1
5

𝑒5𝑡 + 𝑐2
1

−3
𝑒−3𝑡 =

𝑐1𝑒5𝑡 + 𝑐2𝑒−3𝑡

5𝑐1𝑒5𝑡 − 3𝑐2𝑒−3𝑡  is the correct general 

solution.



Phase Portraits

We can get a sense of the solutions of a system of ODEs by studying its phase portrait 

(direction field). The eigenvectors and eigenvalues play a significant role.

1. On a coordinate plane, sketch two lines corresponding to the two eigenvectors, each 

passing through the origin.

2. On each line, draw an arrow away from the origin if the eigenvalue is positive, and into 

the origin if the eigenvalue is negative.

If both eigenvalues are positive, the origin is an unstable node. Solutions will trend away 

from zero.

If both eigenvalues are negative, the origin is a stable node. Solutions will trend to 0.

If the eigenvalues are of different signs, the origin is a saddle, which is always unstable.



In the last example, the solution was 𝐱 𝑡 =
𝑥1 𝑡

𝑥2 𝑡
= 𝑐1

1
5

𝑒5𝑡 + 𝑐2
1

−3
𝑒−3𝑡 . The 

eigenvalues are 𝜆1 = 5 and 𝜆2 = −3 and the eigenvectors are 𝑣1 =
1
5

 and 𝑣2 =
1

−3
.

A rough sketch of the phase portrait for this solution set. In this 

example, all curves trend away from the origin, or possibly come 

toward the origin then trend away. The origin here is a saddle (always 

unstable).



Example: Solve the IVP    𝐱′ =
4 3
2 3

𝐱, where 𝐱 0 =
1
2

. 

Solution: The eigenvalues of 
4 3
2 3

 are 𝜆1 = 6 and 𝜆2 = 1. The corresponding eigenvectors 

are 𝑣1 =
3
2

 and 𝑣2 =
1

−1
.      (you should verify this)

Thus, the general solution is 𝐱 𝑡 = 𝑐1
3
2

𝑒6𝑡 + 𝑐2
1

−1
𝑒𝑡.

To find the constants, let 𝑡 = 0:  
1
2

= 𝑐1
3
2

+ 𝑐2
1

−1
.   (the 𝑒 factors are 1 when 𝑡 = 0).

This is a system 
1 = 3𝑐1 + 𝑐2

2 = 2𝑐1 − 𝑐2
. Solving it, we find that 𝑐1 =

3

5
 and 𝑐2 = −

4

5
.

Thus, the particular solution is 𝐱 𝑡 =
3

5

3
2

𝑒6𝑡 −
4

5

1
−1

𝑒𝑡.



The eigenvalues may be real but not integers:

Example: Solve 𝐱′ =
2 1
3 2

𝐱.

Solution: This matrix appears in the “Matrix Review” powerpoint, Slide 13. It has 

eigenvalues 𝜆1 = 2 + 3 and 𝜆2 = 2 − 3, and eigenvectors 𝑣1 =
1

3
 and 𝑣2 =

1

− 3
.

The general solution is

𝐱 𝑡 = 𝑐1
1

3
𝑒 2+ 3 𝑡 + 𝑐2

1

− 3
𝑒 2− 3 𝑡 .



Larger systems are solved the same way…

Example: Solve 𝐱′ =
2 1 −1
0 1 2
0 0 3

𝐱.  (This matrix is in the Matrix Review ppt, Slide 17)

Solution: The eigenvalues are 𝜆1 = 2, 𝜆2 = 1 and 𝜆3 = 3, and their corresponding 

eigenvectors are 𝑣1 =
1
0
0

, 𝑣2 =
1

−1
0

 and 𝑣3 =
0
1
1

.

The general solution is

𝐱 𝑡 = 𝑐1

1
0
0

𝑒2𝑡 + 𝑐2

1
−1
0

𝑒𝑡 + 𝑐3

0
1
1

𝑒3𝑡 .
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