
Spring-Mass Systems
MAT 275



An object has weight, where weight is mass times gravity:   w = mg.   Here, g is 32 ft/s2.

Hooke’s Law: the force 𝐹ℎ to extend a spring a distance L feet is proportional to L, so that 

𝐹ℎ = 𝑘𝐿, where k is a constant of proportionality.

If the object is attached at the end of a spring, and is allowed to rest (not bob up and down), 

then the two forces cancel: the spring wants to contract in a direction opposite the weight, 

so that

𝑚𝑔 − 𝑘𝐿 = 0,  which gives 𝑚𝑔 = 𝑘𝐿.

Suppose the object is pulled down and let go. It then starts to bob up and down. Let 𝑢(𝑡) be 

the distance (in feet) at t seconds of the object from rest, where down is positive.

The object extended the spring L feet, then the spring’s length is also affected by the 

object’s motion, so that 𝐹ℎ = 𝑘 𝐿 + 𝑢 𝑡 .
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The second derivative of displacement is 𝑢′′(𝑡), which describes the object’s acceleration 

at time t. Using the familiar formula F = ma, we now have 𝐹 = 𝑚𝑢′′ 𝑡 .

There is a resistance force, 𝐹𝑑, defined as a force (in lbs) acting against the bobbing mass 

when the mass is at some speed, given by 𝑢′(𝑡). The force is proportional to the speed but 

in the opposite direction, so that 𝐹𝑑 = −𝛾𝑢′(𝑡).

The sum of all forces must equal 𝑚𝑢′′(𝑡):

𝑚𝑢′′ 𝑡 = 𝐹𝑑 + 𝐹ℎ

𝑚𝑢′′ 𝑡 = 𝑚𝑔 − 𝑘 𝐿 + 𝑢 𝑡 − 𝛾𝑢′(𝑡)

𝑚𝑢′′ 𝑡 = 𝑚𝑔 − 𝑘𝐿 − 𝑘𝑢 𝑡 − 𝛾𝑢′(𝑡)
𝑚𝑢′′ 𝑡 = −𝑘𝑢 𝑡 − 𝛾𝑢′(𝑡)

Thus, we have 𝑚𝑢′′ 𝑡 + 𝛾𝑢′ 𝑡 + 𝑘𝑢 𝑡 = 0 (collecting terms to one side).
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From the last screen, we have 𝑚𝑢′′ 𝑡 + 𝛾𝑢′ 𝑡 + 𝑘𝑢 𝑡 = 0.

Remember, 𝑤 = 𝑚𝑔 so that 𝑚 =
𝑤

𝑔
, and 𝑘 =

weight

initial displacement
.

Written out fully, the form of the equation is

weight

gravity
𝑢′′ 𝑡 +

resistance

velocity
𝑢′ 𝑡 +

weight

init. displacement
𝑢 𝑡 = 0.

The units are: 

lbs

Τft s2
Τft s2 +

lbs

Τft s
Τft s +

lbs

ft
ft .

Everything simplifies into pounds (lbs), which is a force.
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Example: A mass weighing 4 lbs stretches a spring 2 inches (1/6 feet). The mass is pulled 

down 6 more inches (1/2 foot) then released. When the mass is moving at 3 feet/second, 

the surrounding medium applies a resistance force of 6 lbs. Find the initial value problem 

that governs the motion of the bobbing mass, and solve for 𝑢(𝑡).

Solution: Use the form
weight

gravity
𝑢′′ 𝑡 +

resistance

velocity
𝑢′ 𝑡 +

weight

init.displacement
𝑢 𝑡 = 0.

Here, we have w = 4, g = 32, resistance = 6 when v = 3, and init. displacement 1/6:

4

32
𝑢′′ 𝑡 +

6

3
𝑢′ 𝑡 +

4

1/6
𝑢 𝑡 = 0.

Simplified, we have
1

8
𝑢′′ 𝑡 + 2𝑢′ 𝑡 + 24𝑢 𝑡 = 0. Multiplying through by 8, we have

𝑢′′ 𝑡 + 16𝑢′ 𝑡 + 192𝑢 𝑡 = 0,  where 𝑢 0 =
1

2
, 𝑢′ 0 = 0.
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The auxiliary polynomial is 𝑟2 + 16𝑟 + 192 = 0. Using the quadratic formula, we have

𝑟 =
−16 ± 162 − 4 1 192

2(1)
=

−16 ± −512

2
=

−16 ± 16𝑖 2

2
= −8 ± 8𝑖 2.

The general solution is

𝑢 𝑡 = 𝑒−8𝑡 𝐶1 cos 8 2𝑡 + 𝐶2 sin 8 2𝑡 .

When 𝑢 0 =
1

2
, the sine term vanishes, so 𝐶1 =

1

2
.

We now have

𝑢 𝑡 = 𝑒−8𝑡
1

2
cos 8 2𝑡 + 𝐶2 sin 8 2𝑡 .

(c) ASU Math - Scott Surgent. Report errors to 
surgent@asu.edu

6



From the last slide, we have 𝑢 𝑡 = 𝑒−8𝑡 1

2
cos 8 2𝑡 + 𝐶2 sin 8 2𝑡 . To find 𝐶2, we 

take its derivative and use the other initial condition, 𝑢 0 = 0. The derivative is

𝑢′ 𝑡 = 𝑒−8𝑡 −4 2 sin 8 2𝑡 + 𝐶28 2 cos 8 2𝑡 − 8𝑒−8𝑡
1

2
cos 8 2𝑡 + 𝐶2 sin 8 2𝑡 .

But when t = 0, nice things happen. We have:

0 = 𝐶28 2 − 4,  which gives 𝐶2 =
2

4
.

Thus, the equation that models the bobbing spring is

𝑢 𝑡 = 𝑒−8𝑡
1

2
cos 8 2𝑡 +

2

4
sin 8 2𝑡
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Here is a graph of the bobbing spring over a 1-second interval of time:

The spring bobs a couple times but quickly comes back to the rest state due to the viscous 

“dampening” force.

Because the mass was able to bob back to the rest state and beyond (i.e. “up and down”), 

but the amplitude trends to 0 as t increases, this is called an damped system.

Note that the 𝑒−8𝑡 factor in the solution acts as an “envelope”, governing the amplitude. As 

t increases, 𝑒−8𝑡 decreases to 0.
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Example: Same mass and spring as before, but there is no resistive force. That is, 𝛾 = 0. 

Find 𝑢(𝑡) and sketch its graph.

Solution: The differential equation is
1

8
𝑢′′ 𝑡 + 24𝑢(𝑡) = 0, the same initial conditions.

This simplifies to 𝑢′′ 𝑡 + 192𝑢 𝑡 = 0. The auxiliary polynomial is 𝑟2 + 192 = 0, which 

has roots 𝑟 = ±8𝑖 3. The general solution is 𝑢 𝑡 = 𝐶1 cos 8 3𝑡 + 𝐶2 sin 8 3𝑡 .

Once the initial conditions are worked in, the particular solution is 𝑢 𝑡 =
1

2
cos 8 3𝑡 . 

Below is a 1-second graph of the bobbing mass. It never loses amplitude, bobbing forever.
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Example: Suppose the resistive force is twice the original (12 lbs instead of 6 lbs). Find 𝑢(𝑡).

Solution: The differential equation is 𝑢′′ 𝑡 + 32𝑢′ 𝑡 + 192𝑢 𝑡 = 0 . The auxiliary 

polynomial is 𝑟2 + 32𝑟 + 192 = 0, which factors as 𝑟 + 24 𝑟 + 8 = 0, with solutions 

𝑟 = −24 and 𝑟 = −8.

The general solution is 𝑢 𝑡 = 𝐶1𝑒−8𝑡 + 𝐶2𝑒−24𝑡. When the initial conditions are figured in, 

the particular solution is 𝑢 𝑡 =
3

4
𝑒−8𝑡 −

1

4
𝑒−24𝑡 . One second of motion is shown below:

The surrounding viscous medium is so dense the mass never bobs. It just slowly moves back 

to rest state. This is an overdamped system.
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There are three possible outcomes:

• The auxiliary polynomial has two complex conjugate solutions of the form 𝑟 = 𝑎 ± 𝑏𝑖. If 
a = 0, then the system is undamped and the mass bobs up and down forever. If a < 0, 

then the 𝑒𝑎𝑡 factor of the solution acts as an “envelope” function, approaching 0 as t 

increases, and thus damping the bobbing nature of the mass. (Note that a is never 

positive in these problems since that would result in an envelope function that grows 

with time. The amplitude would increase, not decrease.)

• The auxiliary polynomial has two real but different solutions. This is an overdamped 

system. The mass never actually bobs. It just slowly moves back to the rest state 

asymptotically.

• The auxiliary polynomial has one real and repeated root. This is called a critically-

damped system.
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To determine when a system is critically damped, we solve the generic auxiliary 

polynomial form 𝑚𝑟2 + 𝛾𝑟 + 𝑘 = 0 using the quadratic formula, getting

𝑟 =
−𝛾 ± 𝛾2 − 4𝑚𝑘

2𝑚
.

We then set the discriminant to 0: 𝛾2 − 4𝑚𝑘 = 0, which implies that 𝛾 = 2 𝑚𝑘. In the 

original example, we have m = 1/8 and k = 24, so that 𝛾 = 2
1

8
24 = 2 3 would 

result in a critically-damped system.

Recall that the original resistance was 6 lbs when velocity was 3 ft/s. If we set the 

resistance to 6 3 lbs at a velocity of 3 ft/s, then we get 𝛾 =
6 3

3
= 2 3, which will cause 

the auxiliary polynomial to have just one root. (next slide)
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We get the differential equation
1

8
𝑢′′ + 2 3𝑢′ + 24𝑢 = 0 which has solutions 𝑟 = −8 3, 

multiplicity 2. The particular solution (with the same initial conditions as before) is

𝑢 𝑡 = 𝑒−8 3𝑡 4 3𝑡 +
1

2
.

One second of motion is:

It does not look any different from an overdamped system. This is the “boundary” of 

damped-overdamped. If the resistance force is less than 6 3 lbs, then we have a bobbing 

mass. (c) ASU Math - Scott Surgent. Report errors to 
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An External Forcing Function. Suppose the original example has an external forcing 

function that imparts force into the system (e.g. by shaking it rhythmically). Suppose we 

have a forcing function sin
1

2
𝑡 . Thus, the differential equation is

𝑢′′ 𝑡 + 16𝑢′ 𝑡 + 192𝑢 𝑡 = sin
1

2
𝑡 , 𝑢 0 =

1

2
,  𝑢′ 0 = 0.

The general solution is

𝑢 𝑡 = 𝑒−8𝑡 0.5002172 cos 8 2𝑡 + 0.3535 sin 8 2𝑡 + 0.005206 sin
1

2
𝑡 = 0.0002172 cos

1

2
𝑡  .

The graphs are on the next slide.

(c) ASU Math - Scott Surgent. Report errors to 
surgent@asu.edu

14



Here’s the motion of the mass for the first 0.5 second:

Then for the first 25 seconds. The forcing function “overwhelms” the natural decay of the 

unforced case, and the mass bobs according to the forcing function:
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