Reduction of Order

MAT 275



Given a solution of a linear, homogeneous second-order ODE, it is possible to find another
solution using a technique called reduction of order. The coefficients of y or its derivatives
do not necessarily have to be constants.

Assume that the ODE has the form a(x)y” + b(x)y’ + c(x)y = 0 and that y,(x) is a
solution.

We define the other solution y,(x) = v(x)y;(x), where v(x) is to be determined. Using the
product rule, we find y,'(x) and y,"" (x):

y2(x) = v(x)y; (x) + v (x)y; (%),

vy (x) = v(x)y; (x) + 2v" () y; (x) + v"" (x)y, (x).

These are substituted into the differential equation and simplified (next slide)



For the sake of space, we write y, = vy,, y, = vy; +v'y; and y3' = vy, + 2v'y; + vy;':
a(x)(vys +2v'y1 +v"y;1) + b(x)(wy; + v'y;) + c(x)vy; =0
Distribute to clear parentheses and regroup according to degrees of v:

v'[a(x)y] + v'[2a(x)y; + b(x)y1] + v[la(x)y; + b(x)y; + c(x)y1] =0
W
0

Notice that the expression multiplied to v Is O: y, Is a solution of the original differential
equation so this expression is 0. We are left with

v'la()y.] +v'[2alx)y; + b(x)y,] = 0.

Replacing v' with u (and v’ with u"), we have a first-order ODE. Thus, we have reduced
the order, and can be solved using separation of variables or integration factors.

u'la(o)yi] +ul2a(x)y; + b(x)y1] = 0.



Example: Let y; = e?* be one solution of y"" — 4y’ + 4y = 0. Use reduction of order to
find another solution.

Solution: Using the form u'[a(x)y;] + u[2a(x)y; + b(x)y;] = 0, we have a(x) =1,
b(x) = —4, y, = e?* and y; = 2e%*. Thus, we substitute:

u'[(1)(e?)] +u[2(1)(2e**) + (=4)(e**)] = 0.
In this example, the expression 2(1)(2e4*) + (—4)(e?*) = 0, so we have
e~—"u =

Thus, u’ = 0, so integrating, u = k4, a constant. But since v' = u, we integrate again to
find v, getting v = k,x + k5. Since y, = vy, we have y, = (kyx + k,)e?*.



Since y; = e?* and y, = (k,x + k,)e?* are solutions of y"" — 4y" + 4y = 0, the general
solution is

Yy = 613’1 + Czyz — Clezx + Cz(klx + kz)ezx.
Clearing parentheses, we have
y = Cie?* + Crk xe®* + Cyk,e?*.

We can combine the first and third term, calling C; + C,k, as “new” Cy, and Cyk, as “new”
C,. Thus, the general solution can be written

y = Cie?* + Cyxe? .

You may recall that the auxiliary polynomial, 7% — 4r + 4 = 0 has root r = 2, multiplicity 2.
One solution is y; = e?* and the other y, = xe?*. This process “justifies” that extra X.



Example: Given that y;, = t? is one solution of t%y"" + %y’ — 3y = 0. Find another

solution y, of this differential equation, show that y; and y, are linearly independent, and
state the general solution.

Solution: Set y, = vt?, keeping in mind that v represents some function v(t), and that
u(t) = v'(t). Using the form u'[a(x)y,] + u[2a(x)y; + b(x)y;] = 0, we have a(x) =
t%, b(x) = % y, = t% and y; = 2t. Substituting, we have

W) (ED)] + u [z<z:2)(2t) + (%) (tZ)] -0

Simplifying, we have

9
ttu' + §t3u = 0.



9
From the last screen, we have t*u’ + - t3u = 0.

Divide through by t4: This declaration that 7 cannot be 0 1s

important when we get to the
Wronskian step.

9 g
u +—u=0, t # 0.
2t

9 9
This solves using an integration factor: u(t) = e/2t% = 20t = Int*? — 49/2
[(t°/2)(0)dt+C

Sm— =Ct™/2

Thus, u(t) =

But remember, we want v(t), where v’ (t) = u(t). Thus, integrate once to find v(t):

2
v(t) = fCt“?/2 dt = —561:‘7/2 + D.
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Since v(t) = —%Ct‘”2 + D, then

2 2
Vo () = v(t)y,(t) = (—;Cr‘?/2 + D) t? = —5Ct-3/2 + Dt2.

The general solution is

2
y = C1y1(t) + Coy,(t) = C1t% + C, (—5(?:3‘3/2 + th)

2
= C,t? — 5(?2&‘3/2 + C,Dt2.

We can combine C;t* + C,Dt* as C,t%, where “new” C; = C; + C,D, and we can let
“new” C, = — % C,C, so that the general solution is (probably):

y — Cltz + Czt_?)/z.

(c) ASU Math - Scott Surgent. Report errors to
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Let’s make sure that y, = t~3/2 solves t2y"' + %y’ — 3y = 0. Taking derivatives, we have

yh = —%t‘S/Z and y, = 1:515‘7/2. Substituting then simplifying, we have
t2 (175 t_7/2) +%(—;t_5/2> -3(t7%%) =0
17515—3/2 _ Zt—s/z _3¢-3/2 =
t=3/2 <175 — 2 — 3) =0.. Itworks.

Next slide, we’ll check they are linearly independent.



We now show that y; = t2 and y, = t~3/2 are linearly independent:

$2 $=3/2

W(t? t73/2) = det
( ) =det]y (—3/2)e5

3

2

_ T
2 .

Recall that three slides ago, we had to declare that t = 0 because we needed to divide
through by t*. Thus, since t # 0, the expression —gt‘l/z cannot be 0. This means that the

two functions y; = t2 and y, = t~3/2 are linearly independent and that

y = Cyt? + C,t3/2 is the general solution of t2y” + Xy’ — 3y = 0.
2
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