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Given a solution of a linear, homogeneous second-order ODE, it is possible to find another 

solution using a technique called reduction of order. The coefficients of y or its derivatives 

do not necessarily have to be constants.

Assume that the ODE has the form 𝑎 𝑥 𝑦′′ + 𝑏 𝑥 𝑦′ + 𝑐 𝑥 𝑦 = 0 and that 𝑦1(𝑥) is a 

solution.

We define the other solution 𝑦2 𝑥 = 𝑣 𝑥 𝑦1(𝑥), where 𝑣(𝑥) is to be determined. Using the 

product rule, we find 𝑦2′(𝑥) and 𝑦2′′(𝑥):

𝑦2
′ 𝑥 = 𝑣 𝑥 𝑦1

′ 𝑥 + 𝑣′ 𝑥 𝑦1 𝑥 ,

𝑦2
′′ 𝑥 = 𝑣 𝑥 𝑦1

′′ 𝑥 + 2𝑣′ 𝑥 𝑦1
′ 𝑥 + 𝑣′′ 𝑥 𝑦1 𝑥 .

These are substituted into the differential equation and simplified (next slide)
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For the sake of space, we write 𝑦2 = 𝑣𝑦1, 𝑦2
′ = 𝑣𝑦1

′ + 𝑣′𝑦1 and 𝑦2
′′ = 𝑣𝑦1

′′ + 2𝑣′𝑦1
′ + 𝑣𝑦1

′′:

𝑎 𝑥 𝑣𝑦1
′′ + 2𝑣′𝑦1

′ + 𝑣′′𝑦1 + 𝑏 𝑥 𝑣𝑦1
′ + 𝑣′𝑦1 + 𝑐 𝑥 𝑣𝑦1 = 0

Distribute to clear parentheses and regroup according to degrees of 𝑣:

𝑣′′ 𝑎 𝑥 𝑦1 + 𝑣′ 2𝑎 𝑥 𝑦1
′ + 𝑏 𝑥 𝑦1 + 𝑣 𝑎 𝑥 𝑦1

′′ + 𝑏 𝑥 𝑦1
′ + 𝑐 𝑥 𝑦1 = 0

Notice that the expression multiplied to 𝑣 is 0: 𝑦1 is a solution of the original differential 

equation so this expression is 0. We are left with

𝑣′′ 𝑎 𝑥 𝑦1 + 𝑣′ 2𝑎 𝑥 𝑦1
′ + 𝑏 𝑥 𝑦1 = 0.

Replacing 𝑣′ with 𝑢 (and 𝑣′′ with 𝑢′), we have a first-order ODE. Thus, we have reduced 

the order, and can be solved using separation of variables or integration factors.

𝑢′ 𝑎 𝑥 𝑦1 + 𝑢 2𝑎 𝑥 𝑦1
′ + 𝑏 𝑥 𝑦1 = 0.
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Example: Let 𝑦1 = 𝑒2𝑥 be one solution of 𝑦′′ − 4𝑦′ + 4𝑦 = 0. Use reduction of order to 

find another solution.

Solution: Using the form 𝑢′ 𝑎 𝑥 𝑦1 + 𝑢 2𝑎 𝑥 𝑦1
′ + 𝑏 𝑥 𝑦1 = 0, we have 𝑎 𝑥 = 1,  

𝑏 𝑥 = −4, 𝑦1 = 𝑒2𝑥 and 𝑦1
′ = 2𝑒2𝑥. Thus, we substitute:

𝑢′ 1 𝑒2𝑥 + 𝑢 2 1 2𝑒2𝑥 + −4 𝑒2𝑥 = 0.

In this example, the expression 2 1 2𝑒2𝑥 + −4 𝑒2𝑥 = 0, so we have

𝑒2𝑥𝑢′ = 0.

Thus, 𝑢′ = 0, so integrating, 𝑢 = 𝑘1, a constant. But since 𝑣′ = 𝑢, we integrate again to 

find 𝑣, getting 𝑣 = 𝑘1𝑥 + 𝑘2. Since 𝑦2 = 𝑣𝑦1, we have 𝑦2 = 𝑘1𝑥 + 𝑘2 𝑒2𝑥.
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Since 𝑦1 = 𝑒2𝑥 and 𝑦2 = 𝑘1𝑥 + 𝑘2 𝑒2𝑥 are solutions of 𝑦′′ − 4𝑦′ + 4𝑦 = 0, the general 

solution is

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 = 𝐶1𝑒2𝑥 + 𝐶2 𝑘1𝑥 + 𝑘2 𝑒2𝑥 .

Clearing parentheses, we have

𝑦 = 𝐶1𝑒2𝑥 + 𝐶2𝑘1𝑥𝑒2𝑥 + 𝐶2𝑘2𝑒2𝑥 .

We can combine the first and third term, calling 𝐶1 + 𝐶2𝑘2 as “new” 𝐶1, and 𝐶2𝑘1 as “new” 

𝐶2. Thus, the general solution can be written

𝑦 = 𝐶1𝑒2𝑥 + 𝐶2𝑥𝑒2𝑥 .

You may recall that the auxiliary polynomial, 𝑟2 − 4𝑟 + 4 = 0 has root 𝑟 = 2, multiplicity 2. 

One solution is 𝑦1 = 𝑒2𝑥 and the other 𝑦2 = 𝑥𝑒2𝑥. This process “justifies” that extra x.
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Example: Given that 𝑦1 = 𝑡2 is one solution of 𝑡2𝑦′′ +
𝑡

2
𝑦′ − 3𝑦 = 0.  Find another 

solution 𝑦2 of this differential equation, show that 𝑦1 and 𝑦2 are linearly independent, and 

state the general solution.

Solution: Set 𝑦2 = 𝑣𝑡2, keeping in mind that 𝑣 represents some function 𝑣 𝑡 , and that 

𝑢 𝑡 = 𝑣′(𝑡). Using the form 𝑢′ 𝑎 𝑥 𝑦1 + 𝑢 2𝑎 𝑥 𝑦1
′ + 𝑏 𝑥 𝑦1 = 0, we have 𝑎 𝑥 =

𝑡2,  𝑏 𝑥 =
𝑡

2
, 𝑦1 = 𝑡2 and 𝑦1

′ = 2𝑡. Substituting, we have

𝑢′ 𝑡2 𝑡2 + 𝑢 2 𝑡2 2𝑡 +
𝑡

2
𝑡2 = 0.

Simplifying, we have

𝑡4𝑢′ +
9

2
𝑡3𝑢 = 0.

(c) ASU Math - Scott Surgent. Report errors to 
surgent@asu.edu

6



From the last screen, we have 𝑡4𝑢′ +
9

2
𝑡3𝑢 = 0.

Divide through by 𝑡4:

𝑢′ +
9

2𝑡
𝑢 = 0, 𝑡 ≠ 0.

This solves using an integration factor: 𝜇 𝑡 = 𝑒׬
9

2𝑡
𝑑𝑡 = 𝑒

9

2
ln 𝑡 = 𝑒ln 𝑡 Τ9 2

= 𝑡 Τ9 2.

Thus, 𝑢 𝑡 =
׬ 𝑡 Τ9 2 0 𝑑𝑡+𝐶

𝑡 Τ9 2 = 𝐶𝑡− Τ9 2.

But remember, we want 𝑣(𝑡), where 𝑣′ 𝑡 = 𝑢(𝑡). Thus, integrate once to find 𝑣(𝑡):

𝑣 𝑡 = න 𝐶𝑡− Τ9 2 𝑑𝑡 = −
2

7
𝐶𝑡− Τ7 2 + 𝐷.
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Since 𝑣 𝑡 = −
2

7
𝐶𝑡− Τ7 2 + 𝐷, then

The general solution is 

We can combine 𝐶1𝑡2 + 𝐶2𝐷𝑡2 as 𝐶1𝑡2, where “new” 𝐶1 = 𝐶1 + 𝐶2𝐷, and we can let 

“new” 𝐶2 = −
2

7
𝐶2𝐶, so that the general solution is (probably):

𝑦 = 𝐶1𝑡2 + 𝐶2𝑡− Τ3 2.
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Let’s make sure that 𝑦2 = 𝑡− Τ3 2 solves 𝑡2𝑦′′ +
𝑡

2
𝑦′ − 3𝑦 = 0. Taking derivatives, we have 

𝑦2
′ = −

3

2
𝑡− Τ5 2 and 𝑦2

′′ =
15

4
𝑡− Τ7 2. Substituting then simplifying, we have

𝑡2
15

4
𝑡− Τ7 2 +

𝑡

2
−

3

2
𝑡− Τ5 2 − 3 𝑡− Τ3 2 = 0

15

4
𝑡− Τ3 2 −

3

4
𝑡− Τ3 2 − 3𝑡− Τ3 2 = 0

𝑡− Τ3 2
15

4
−

3

4
− 3 = 0 …  It works.

Next slide, we’ll check they are linearly independent.
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We now show that 𝑦1 = 𝑡2 and 𝑦2 = 𝑡− Τ3 2 are linearly independent:

𝑊 𝑡2, 𝑡− Τ3 2 = 𝑑𝑒𝑡
𝑡2 𝑡− Τ3 2

2𝑡 − Τ3 2 𝑡− Τ5 2

= −
3

2
𝑡− Τ1 2 − 2𝑡− Τ1 2

= −
7

2
𝑡− Τ1 2.

Recall that three slides ago, we had to declare that 𝑡 ≠ 0 because we needed to divide 

through by 𝑡4. Thus, since 𝑡 ≠ 0, the expression −
7

2
𝑡− Τ1 2 cannot be 0. This means that the 

two functions 𝑦1 = 𝑡2 and 𝑦2 = 𝑡− Τ3 2 are linearly independent and that

𝑦 = 𝐶1𝑡2 + 𝐶2𝑡− Τ3 2 is the general solution of 𝑡2𝑦′′ +
𝑡

2
𝑦′ − 3𝑦 = 0.
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