
First-Order Autonomous  

Differential Equations 
 

These differential equations are often solved using Separation of Variables. They are useful 

for modeling growth behavior, where the rate of growth is proportional in some manner to 

the quantity present, usually via a proportion. 

 

Example 5.1: The rate of change of a population of a city is proportional to the population 

itself. If the population in 2010 was 25,000, and in 2018 was 32,000, forecast the 

population in 2025. 

 

Solution: Let 𝑃(𝑡) be the population after t years, where t = 0 represents the year 2010. 

Note that 𝑃 > 0. Time t could be negative, for example, if we wanted to estimate the city’s 

population in 2005. Translated, we obtain 

 

“The rate of change of a population”:   
𝑑𝑃

𝑑𝑡
 

“is”      = 

“proportional to the population itself”:  𝑘𝑃. 

 

The number k is the proportionality constant. It is not a constant of integration. Also, when 

t = 0, the population is 25,000, and when t = 8, the population is 32,000. Assembling this 

into an equation, we have 

 
𝑑𝑃

𝑑𝑡
= 𝑘𝑃,    where   𝑃(0) = 25,000   and   𝑃(8) = 32,000. 

 

Separate the variables. Note that it makes sense for P > 0 in this example: 

 
𝑑𝑃

𝑃
= 𝑘 𝑑𝑡. 

 

 

Integrate and solve for 𝑃: 

 

∫
𝑑𝑃

𝑃
= ∫ 𝑘 𝑑𝑡 

ln 𝑃 = 𝑘𝑡 + 𝐶 

𝑃 = 𝑒𝑘𝑡+𝐶 

𝑃 = 𝑒𝑘𝑡𝑒𝐶 

𝑃(𝑡) = 𝐶𝑒𝑘𝑡 . 

 

 

 

 

 



Use the ordered pair (0, 25000) to determine C: 

 

25,000 = 𝐶𝑒0𝑡 

𝐶 = 25,000. 

 

Thus, we now have  

 

𝑃(𝑡) = 25,000𝑒𝑘𝑡 . 
 

Use the ordered pair (8, 32000) to determine k: 

 

32,000 = 25,000𝑒𝑘(8) 

32

25
= 𝑒8𝑘 

ln (
32

25
) = 8𝑘 

𝑘 =
1

8
ln (

32

25
) ≈ 0.031. 

 

The specific solution that meets all stated conditions is 

 

𝑃(𝑡) = 25,000𝑒0.031𝑡. 
 

In 2025, t = 15, so we have 

 

𝑃(15) = 25,000𝑒0.031(15) ≈ 39,800. 
 

In 2025, there will be about 39,800 people in the city. 

 

 

 

Example 5.2: The rate of change in the value of a stock is inversely proportional to the 

square of the value of that stock. If the stock’s value was $20 at noon, and was $23 at 3 

p.m., what is the stock’s value at 5 p.m.? 

 

Solution: Let 𝑉(𝑡) be the value, in dollars, of the stock t hours after noon (when 𝑡 = 0). 

Translating into mathematics, we have 

 

“The rate of change in the value…”   
𝑑𝑉

𝑑𝑡
 

“is”       = 

“inversely proportional to the square of the value…” 
𝑘

𝑉2 

 

 

 

 



The known conditions are 𝑉(0) = $20 and 𝑉(3) = $23. Thus, the differential equation 

that models this growth is 

 
𝑑𝑉

𝑑𝑡
=

𝑘

𝑉2
      where      𝑉(0) = 20    and    𝑉(3) = 23. 

 

Separate the variables: 

 

𝑉2 𝑑𝑉 = 𝑘 𝑑𝑡 

 

Integrate: 

 

∫ 𝑉2 𝑑𝑉 = ∫ 𝑘 𝑑𝑡 ,      which gives     
1

3
𝑉3 = 𝑘𝑡 + 𝐶. 

 

Multiply both sides by 3 to clear fractions: 

 

𝑉3 = 3𝑘𝑡 + 𝐶. 
 

The constant of integration C is a generic, so 3C is the same as writing C. Take the cube 

root: 

 

𝑉(𝑡) = √3𝑘𝑡 + 𝐶
3

. 
 

This is the general model that governs the stock’s value. 

 

To find C, use the condition, 𝑉(0) = 20: 

 

20 = √3𝑘(0) + 𝐶
3

 

20 = √𝐶
3

 

𝐶 = 203 = 8,000. 

 

We now have 

𝑉(𝑡) = √3𝑘𝑡 + 8,000
3

. 
 

 

To find 𝑘, use the other condition, 𝑉(3) = 23: 

 

23 = √3𝑘(3) + 8,0003 . 

233 = 9𝑘 + 8,000 

12,167 = 9𝑘 + 8,000 

4,167 = 9𝑘 

𝑘 =
4,167

9
= 463. 



 

The specific solution is now 

 

𝑉(𝑡) = √3(463)𝑡 + 8,000
3

= √1,389𝑡 + 8,000
3

. 
 

In this case, it’s permissible to combine the factors 3 and 𝑘 in front of the 𝑡. It won’t affect 

the later calculation. 

 

The stock’s value at 5 p.m. means 𝑡 = 5: 

 

𝑉(5) = √1,389(5) + 8,0003 ≈ $24.63. 
 

 
 

Example 5.3: Find the general solution of 𝑦′ = 𝑦2 + 𝑦. 

 

Solution: Separating variables gives 

 
𝑑𝑦

𝑦2 + 𝑦
= 𝑑𝑥,       𝑦 ≠ 0, −1. 

 

Before antidifferentiating the left side, the denominator needs to be written as the sum of 

smaller fractions, using a process called partial fraction decomposition: 

 
1

𝑦2 + 𝑦
=

1

𝑦(𝑦 + 1)
=

𝐴

𝑦
+

𝐵

𝑦 + 1
, 

 

 

where A and B are the unknown numerators of the smaller fractions. The two fractions are 

then recomposed by finding the common denominator: 

 
1

𝑦(𝑦 + 1)
=

𝐴(𝑦 + 1) + 𝐵𝑦

𝑦(𝑦 + 1)
. 

 

The numerators are now compared. On the right side, clear parentheses and reorder the 

terms according to powers of y: 

 

1 = (𝐴 + 𝐵)𝑦 + 𝐴. 
 

By viewing the left side as 0y + 1, relate the expressions on the right to those on the left. 

Thus, A + B = 0 and A = 1. This forces B = –1. The partial fraction decomposition is 

complete, and we have 

 
1

𝑦2 + 𝑦
=

1

𝑦
−

1

𝑦 + 1
. 

 

 

 



This is now in a form to be antidifferentiated: 

 

∫
𝑑𝑦

𝑦2 + 𝑦
= ∫ 𝑑𝑥 

∫ (
1

𝑦
−

1

𝑦 + 1
) 𝑑𝑦 = ∫ 𝑑𝑥 

ln 𝑦 − ln(𝑦 + 1) = 𝑥 + 𝐶. 

 

To solve for y, use the logarithm property ln 𝑎 − ln 𝑏 = ln
𝑎

𝑏
: 

 

ln (
𝑦

𝑦 + 1
) = 𝑥 + 𝐶. 

 

This is rewritten using base-e notation. Note that 𝑒𝑥+𝐶 = 𝑒𝑥𝑒𝐶 = 𝐶𝑒𝑥. Then y is isolated 

through algebra: 

 
𝑦

𝑦 + 1
= 𝐶𝑒𝑥 

𝑦 = 𝐶𝑒𝑥(𝑦 + 1) 

𝑦 = 𝐶𝑦𝑒𝑥 + 𝐶𝑒𝑥 

𝑦 − 𝐶𝑦𝑒𝑥 = 𝐶𝑒𝑥 

𝑦(1 − 𝐶𝑒𝑥) = 𝐶𝑒𝑥 

𝑦 =
𝐶𝑒𝑥

1 − 𝐶𝑒𝑥
. 

While this is correct, a simpler form can be found by dividing the numerator and 

denominator by 𝐶𝑒𝑥: 

 
𝐶𝑒𝑥/𝐶𝑒𝑥

(1 − 𝐶𝑒𝑥)/𝐶𝑒𝑥
=

1

(
1

𝐶𝑒𝑥) − 1
. 

 

The expression 
1

𝐶𝑒𝑥 = 𝐶𝑒−𝑥 by treating 
1

𝐶
 as “new” C. The simplified form of the general 

solution is 

 

𝑦 =
1

𝐶𝑒−𝑥 − 1
,       𝑥 ≠ ln 𝐶. 

 

Let’s explore the behavior of the solution curves, each dependent on an initial condition 

(𝑎, 𝑏). Direct evaluation of the initial condition in the general solution shows that 𝐶 =
1+𝑏

𝑏
𝑒𝑎. When 𝑏 < −1 or 𝑏 > 0, then 𝐶 is positive, and when −1 < 𝑏 < 0, then 𝐶 is 

negative. 

 



The range of a solution curve will be in the interval 𝑦 < −1, −1 < 𝑦 < 0 or 𝑦 > 0, where 

C is positive when 𝑦 < −1 or 𝑦 > 0, and C is negative when −1 < 𝑦 < 0. Three cases 

emerge: 

 

If 𝑦 < −1, then C is positive, but the denominator 𝐶𝑒−𝑥 − 1 must be negative for the whole 

expression 1 (𝐶𝑒−𝑥 − 1)⁄  to be negative, thus 𝐶𝑒−𝑥 − 1 < 0. Isolating x, we find that the 

domain will be in the interval 𝑥 > ln 𝐶. 

 

If −1 < 𝑦 < 0, then the denominator must also be 

negative, but that since C is negative also, the 

expression ln 𝐶 is not defined. In other words, the 

domain of x is the whole Real line. 

 

If 𝑦 > 0, then C is positive, and the denominator 

must be positive for the whole expression 

1 (𝐶𝑒−𝑥 − 1)⁄  to be positive, thus 𝐶𝑒−𝑥 − 1 > 0. 

Isolating x, we find that the domain will be in the 

interval 𝑥 < ln 𝐶. 

 

In the image, the asymptotes show how the xy-

plane is divided into potential solution regions. The 

initial conditions for this illustration are (2,3), (2, –1/2) and (2, –3). For the initial condition 

(2,3), 𝐶 =
4

3
𝑒2 so that ln (

4

3
𝑒2) ≈ 2.288 is the upper bound of the domain, and for (2, –3),  

𝐶 =
2

3
𝑒2 so that ln (

2

3
𝑒2) ≈ 1.595 is the lower bound of the domain. Each is a vertical 

asymptote for its respective solution curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Direction Fields for First-Order Autonomous Equations 

 

For an autonomous differential equation, the x is absent, so the slopes only depend on the 

y value at that point. For each y-value, the slope at each point is the same, going across 

horizontally. For example, the direction field for 𝑦′ = 𝑦 is 

 

 
Scale: each gridline is 0.5 unit. Courtesy https://aeb019.hosted.uark.edu/dfield.html. 

 

The solution curves will trend away from the x-axis (y = 0), either entirely above the x-axis 

or entirely below it, depending on the initial condition. No solution curve for this 

differential equation will cross (or touch) the x-axis. Recall that the general solution for 

𝑦′ = 𝑦 is 𝑦 = 𝐶𝑒𝑥. Picking any point in the plane (except along the x-axis), and following 

the arrows, one sees the familiar shape of the exponential function. 

 

In an autonomous differential equation, the y values for which 𝑦′ = 0 are called 

equilibrium solutions. On a direction field, equilibrium solutions will be where the slope 

lines are horizontal, reading across left to right. There are three types of equilibrium 

solutions: 

 

If the solution curves trend away from the equilibrium both above and below as x increases, 

it is an unstable equilibrium. 

 

If the solution curves trend toward the equilibrium asymptotically both above and below 

as x increases, it is a stable equilibrium. 

 



    
Left: example of an unstable equilibrium 
Right: Example of a stable equilibrium 

 

If the solution curves trend away from the equilibrium on one side of the equilibrium, and 

trend toward the equilibrium on the other side as x increases, it is a semistable equilibrium. 

 

 
Example of a semistable equilibrium. 

The curves trend away from equilibrium when y > 0, and trend toward equilibrium when y < 0. 

 

 
 

Example 5.4: Given 𝑦′ = 𝑦3 − 9𝑦. Find all equilibrium solutions, and determine if they 

are stable, unstable or semistable. 

 

Solution: The equilibrium points are where 𝑦′ = 𝑦3 − 9𝑦 = 0. Factoring, we have 

𝑦(𝑦 + 3)(𝑦 − 3) = 0, so the equilibrium solutions are where y = 0, y = 3, and y = –3. This 

divides the y-axis into four intervals. A value is chosen within each interval and evaluated 

to determine the sign of the slope: 

 

𝑦 > 3:                 Choose 𝑦 = 4.     Thus,   𝑦′ = 43 − 9(4) > 0. 
0 < 𝑦 < 3:         Choose 𝑦 = 1.     Thus,   𝑦′ = 13 − 9(1) < 0. 

−3 < 𝑦 < 0:         Choose 𝑦 = −1.     Thus,   𝑦′ = (−1)3 − 9(−1) > 0. 
𝑦 < −3:              Choose 𝑦 = −4.     Thus,   𝑦′ = (−4)3 − 9(−4) < 0. 

 

 

 

 

 



Curves above y = 3 slope upward, away from y = 3, and curves between y = 0 and y = 3 

will curve down, also away from y = 3. So y = 3 is unstable. By similar reasoning, y = 0 is 

stable and y = –3 is unstable. 

 

 
Direction field showing stable equilibrium at y = 0, and unstable equilibrium at y = ±3. 

Courtesy https://aeb019.hosted.uark.edu/dfield.html. 

 


