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There exist many numerical methods that allow us to construct an approximate solution to 

an ordinary differential equation. In this section, we will study two: Euler’s Method, and 

Advanced Euler’s (Heun’s) Method.

Euler’s Method:

Given: A differential equation of the form 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), with initial condition 𝑦0 = 𝑦(𝑥0).

Assume the solution exists over an interval 𝑥0, 𝑏  and subdivide this interval into equal 

subdivisions of length h (the “step size”). Thus, a typical subinterval will have the form

𝑥𝑘 , 𝑥𝑘+1 , or equivalently, 𝑥𝑘 , 𝑥𝑘 + ℎ .

Integrate both sides with respect to x from 𝑥𝑘 to 𝑥𝑘 + ℎ:

න
𝑥𝑘

𝑥𝑘+ℎ 𝑑𝑦

𝑑𝑥
 𝑑𝑥 = න

𝑥𝑘

𝑥𝑘+ℎ

𝑓 𝑥, 𝑦  𝑑𝑥 .
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(Continued from last slide)

න
𝑥𝑘

𝑥𝑘+ℎ 𝑑𝑦

𝑑𝑥
 𝑑𝑥 = න

𝑥𝑘

𝑥𝑘+ℎ

𝑓 𝑥, 𝑦  𝑑𝑥

𝑦 𝑥𝑘 + ℎ − 𝑦 𝑥𝑘 = න
𝑥𝑘

𝑥𝑘+ℎ

𝑓 𝑥, 𝑦  𝑑𝑥

𝑦 𝑥𝑘 + ℎ = 𝑦 𝑥𝑘 + න
𝑥𝑘

𝑥𝑘+ℎ

𝑓 𝑥, 𝑦  𝑑𝑥

Notation: We will call 𝑦𝑘 the approximate value to 𝑦(𝑥𝑘), which represents an actual 

solution point of the differential equation.
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We can approximate ׬𝑥𝑘

𝑥𝑘+ℎ
𝑓 𝑥, 𝑦  𝑑𝑥 using rectangles (similar to Riemann Sums). So we 

replace ׬𝑥𝑘

𝑥𝑘+ℎ
𝑓 𝑥, 𝑦  𝑑𝑥 with ℎ ⋅ 𝑓(𝑥𝑘 , 𝑦𝑘).

Thus, we have the following formula for approximating solutions to a differential 

equation:

𝑦𝑘+1 = 𝑦𝑘 + ℎ ⋅ 𝑓(𝑥𝑘 , 𝑦𝑘).

This is Euler’s Method.
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Example: Find the approximate solutions of
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 with 𝑦 0 = 1. Use a step size 

of ℎ = 0.1.

Note: The initial condition is also written as 𝑥0 = 0 and 𝑦0 = 1. Also, 𝑓(𝑥, 𝑦) represents 

the right side of the differential equation, so 𝑓 𝑥, 𝑦 = 𝑥 + 𝑦. It does not represent the 

solution to the differential equation. That is 𝑦 = 𝑦(𝑥), which is what we’re trying to 

approximate.

Solution: The formula is 𝑦𝑘+1 = 𝑦𝑘 + ℎ ⋅ 𝑓(𝑥𝑘 , 𝑦𝑘). Thus,

𝑦1 = 𝑦0 + (0.1) ⋅ 𝑓(𝑥0, 𝑦0)
𝑦1 = 1 + (0.1)(0 + 1)

𝑦1 = 1 + 0.1
𝑦1 = 1.1.

So now we have a new approximation point, 𝑥1, 𝑦1 = (0.1,1.1).
(c) ASU Math - Scott Surgent. Report errors to 
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So we repeat the process:

𝑦2 = 𝑦1 + 0.1 ⋅ 𝑓(𝑥1, 𝑦1)
𝑦2 = 1.1 + 0.1(0.1 + 1.1)

𝑦2 = 1.1 + 0.1(1.2)
𝑦2 = 1.22

Now we have another approximation point, 𝑥2, 𝑦2 = (0.2,1.22).

𝑦3 = 𝑦2 + 0.1 ⋅ 𝑓 𝑥2, 𝑦2

𝑦3 = 1.22 + 0.1(0.2 + 1.22)
𝑦3 = 1.362.

Now we have 𝑥3, 𝑦3 = (0.3, 1.362). 
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From last slide, we have 𝑥3, 𝑦3 = (0.3,1.362)…

𝑦4 = 𝑦3 + 0.1 ⋅ 𝑓(𝑥3, 𝑦3)
𝑦4 = 1.362 + 0.1(0.3 + 1.362)

𝑦4 = 1.5282.

This gives us 𝑥4, 𝑦4 = (0.4,1.5282).

One more time:

𝑦5 = 𝑦4 + 0.1 ⋅ 𝑓 𝑥4, 𝑦4

𝑦5 = 1.5282 + 0.1(0.4 + 1.5282)
𝑦5 = 1.72102.

This gives us 𝑥5, 𝑦5 = (0.5,1.72102).
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The five approximation points on the solution curve of 
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦, 𝑦 0 = 1 are:

The actual solution of 
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦, 𝑦 0 = 1 is found by using an integration factor. It is

𝑦 𝑥 = −𝑥 − 1 + 2𝑒𝑥.

This is used to generate actual solutions of 
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦, 𝑦 0 = 1.

(c) ASU Math - Scott Surgent. Report errors to 
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Here is the actual solution curve, 𝑦 𝑥 = −𝑥 − 1 + 2𝑒𝑥:
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Improved Euler’s Method (also called Heun’s Method)

Instead of using rectangles to approximate ׬𝑥𝑘

𝑥𝑘+ℎ
𝑓 𝑥, 𝑦  𝑑𝑥, we use trapezoids.

A trapezoid with base h and heights 𝑓(𝑥𝑘 , 𝑦𝑘) and 𝑓(𝑥𝑘+1, 𝑦𝑘+1) has area

ℎ

2
𝑓 𝑥𝑘 , 𝑦𝑘 + 𝑓 𝑥𝑘+1, 𝑦𝑘+1 .

Thus, the formula now becomes

𝑦𝑘+1 = 𝑦𝑘 +
ℎ

2
𝑓 𝑥𝑘 , 𝑦𝑘 + 𝑓 𝑥𝑘+1, 𝑦𝑘+1 .

(but there’s a problem…)
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From the last slide, we have 

𝑦𝑘+1 = 𝑦𝑘 +
ℎ

2
𝑓 𝑥𝑘 , 𝑦𝑘 + 𝑓 𝑥𝑘+1, 𝑦𝑘+1 .

The problem is … how do we approximate 𝑦𝑘+1 on the left side when it’s also part of the 

formula on the right side?

The answer is to replace it with the formula we used for Euler’s Method:

𝑦𝑘+1 = 𝑦𝑘 +
ℎ

2
𝑓 𝑥𝑘 , 𝑦𝑘 + 𝑓 𝑥𝑘 + ℎ, 𝑦𝑘 + ℎ ⋅ 𝑓 𝑥𝑘 , 𝑦𝑘 .

This is called the Improved Euler’s Formula.
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Example: use the Improved Euler’s Method on 
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦, 𝑦 0 = 1, with a step side of 

ℎ = 0.1, to find 𝑦1 and 𝑦2.

Solution: We have    𝑦𝑘+1 = 𝑦𝑘 +
ℎ

2
𝑓 𝑥𝑘 , 𝑦𝑘 + 𝑓 𝑥𝑘 + ℎ, 𝑦𝑘 + ℎ ⋅ 𝑓 𝑥𝑘 , 𝑦𝑘 .

Thus, 

𝑦1 = 𝑦0 +
0.1

2
𝑓 𝑥0, 𝑦0 + 𝑓 𝑥0 + 0.1, 𝑦0 + 0.1 ⋅ 𝑓 𝑥0, 𝑦0

𝑦1 = 1 + 0.05 0 + 1 + 0 + 0.1 + 1 + 0.1 0 + 1

𝑦1 = 1 + 0.05 1 + 0.1 + 1.1 = 1.11

Recall that the other method gave 𝑦1 = 1.1 and the actual solution is 𝑦 0.1 = 1.1103.

Thus, we see that this method is already providing more precise approximations.
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One more time… we have

𝑦𝑘+1 = 𝑦𝑘 +
ℎ

2
𝑓 𝑥𝑘 , 𝑦𝑘 + 𝑓 𝑥𝑘 + ℎ, 𝑦𝑘 + ℎ ⋅ 𝑓 𝑥𝑘 , 𝑦𝑘

𝑦2 = 𝑦1 + 0.05 𝑥1 + 𝑦1 + 𝑥1 + 0.1 + 𝑦1 + 0.1 𝑥1 + 𝑦1

Don’t forget that 𝑥1, 𝑦1 = (0.1, 1.11) using the 𝑦1 from the last slide.

Thus, we obtain

𝑦2 = 1.11 + 0.05 0.1 + 1.11 + 0.1 + 0.1 + 1.11 + 0.1 0.1 + 1.11

This works out to 𝑦2 = 1.24205. Recall that Euler’s Method gave an approximation of 

𝑦2 = 1.22, and that the actual solution was 𝑦 0.2 = 1.2428. Again, we see better 

precision.
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Advantages & Disadvantages

• These methods allow you ways to find solution curves when the differential equation 

may not be solvable using analytical means. For example, it is impossible to find a 

“closed form” solution to 𝑦′ + 2𝑥𝑦 = 1. If we know an initial condition, we can 

numerically find approximate solutions to the differential equation.

• The larger the step size, the approximations usually diverge faster from the actual 

solution. The smaller step sizes give better approximations, but require more 

calculations to cover a certain interval.

• Euler’s method is fast but not as precise, while the Improved Euler’s Method offers 

better precision, but takes more time.

• Suggestion: do not round any calculations at any steps. This adds in “error”, which is 

not desired since this is already an approximation technique. Write out all decimal 

places.

• Write out each formula, step by step, since it’s easy to get lost on each step.
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