
Matrix Review: Determinants, 
Eigenvalues & Eigenvectors

MAT 275



A linear system is two or more linear equations in two or more variables taken together.

For example, 
3𝑥 + 2𝑦 = 11
−𝑥 + 5𝑦 = 19

 is a system of two linear equations in two variables.

A solution of a system is any ordered pair (triple, etc.) that solves all equations of the system 

simultaneously.

For example, (1,4) is a solution of the above system, since 3 1 + 2 4 = 3 + 8 = 11 is true, 

and − 1 + 5 4 = −1 + 20 = 19 is also true.

A system is consistent if it has at least one solution. Otherwise, the system is inconsistent. 

The above system is consistent.

Linear systems may have no solution (inconsistent), one solution or infinitely many solutions.
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Matrices (singular: Matrix)

Matrices are used to solve systems of linear equations as well as to give insight as to the 

structure of the system. There are many ways to solve a linear system using matrices. Some 

that you may have seen are to use Gaussian Row Operations (i.e. the RREF method), 

Cramer’s Rule, and so on.

For example, the system 
3𝑥 + 2𝑦 = 11
−𝑥 + 5𝑦 = 19

 can be written as an equation of matrices:

3 2
−1 5

𝐴

⋅
ด

𝑥
𝑦
𝑋

=
ถ
11
19
𝐵

.

Matrix 𝐴 is the coefficient matrix, 𝑋 is the variable matrix, and 𝐵 is the constants matrix. 

Since the system has two equations in two variables, 𝐴 is a “2 × 2” matrix, or a square 

matrix. Matrices 𝑋 and 𝐵 are called vectors since they each have just one column.
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All square matrices have associated with each a unique real number called its determinant. 

For the 2 × 2 case, the formula is:

det
𝑎 𝑏
𝑐 𝑑

= 𝑎𝑑 − 𝑏𝑐.

Here, “det” stands for determinant. It acts like a function that assigns to each square matrix 

a number, where that number is given by the above formula.

Examples:

det
2 6
3 7

= 2 7 − 3 6 = 14 − 18 = −4.

det
4 2

−5 6
= 4 6 − −5 2 = 24 − −10 = 34.

det
3 6

12 24
= 3 24 − 12 6 = 72 − 72 = 0.

If the determinant of a square matrix is 0, that matrix is called singular.
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The system 
3𝑥 + 2𝑦 = 11
−𝑥 + 5𝑦 = 19

 can be written as 
3 2

−1 5
𝐴

⋅
ด

𝑥
𝑦
𝑋

=
ถ
11
19
𝐵

.

Matrices 𝑋 and 𝐵 are both 2 × 1 in size (2 rows, 1 column). Matrix multiplication is 

defined as the linear combinations of rows of the left factor with columns of the right 

factor. Thus, if x = 1 and y = 4, we have

3 2
−1 5

⋅
1
4

=
3 1 + 2 4

−1 1 + 5 4
=

11
19

.

Matrices can also be multiplied by a constant, called a scalar. For example:

2 ⋅ 𝐴 = 2 ⋅
3 2

−1 5
=

2 ⋅ 3 2 ⋅ 2
2 ⋅ −1 2 ⋅ 5

=
6 4

−2 10
.

7 ⋅ 𝐵 = 7 ⋅
11
19

=
7 ⋅ 11
7 ⋅ 19

=
77

133
.
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Eigenvalues and Eigenvectors

Something interesting happens with square matrices and specially-chosen scalar multiples 

and vectors. For example, let 𝐴 =
3 1
3 5

, and let vectors 𝑣1 =
1

−1
 and 𝑣2 =

1
3

. Note 

what happens when we calculate 𝐴 ⋅ 𝑣1 and 𝐴 ⋅ 𝑣2:

𝐴 ⋅ 𝑣1 =
3 1
3 5

⋅
1

−1
=

2
−2

, which is the same as 2 ⋅ 𝑣1 = 2 ⋅
1

−1
=

2
−2

.

𝐴 ⋅ 𝑣2 =
3 1
3 5

⋅
1
3

=
6

18
, which is the same as 6 ⋅ 𝑣2 = 6 ⋅

1
3

=
6

18
.

In other words, for specially-chosen vectors, the action of multiplying it by a matrix 𝐴 has the 

same result as if that vector were multiplied by some non-zero scalar constant.

In these cases, we call 2 and 6 the eigenvalues of 𝐴, and call the vectors 𝑣1 and 𝑣2 

eigenvectors of 𝐴. Eigenvalues are usually denoted by the Greek letter lambda, 𝜆.
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Finding Eigenvalues and Eigenvectors

Let 𝐴 be a square matrix (we’ll look at the 2 × 2 case for now). We seek to find a scalar 

eigenvalue 𝜆 and a non-zero eigenvector 𝑣 such that

𝐴 ⋅ 𝑣 = 𝜆 ⋅ 𝑣.

We need to write the above equation so that the right side “looks like” the left side. By writing 

𝜆 = 𝜆 ⋅ 𝐼 =
𝜆 0
0 𝜆

, then both sides are essentially a 2 × 2 matrix multiplying to a 2 × 1 

matrix. This allows us to move the terms around algebraically:

𝐴 ⋅ 𝑣 = 𝜆 ⋅ 𝐼 ⋅ 𝑣 is the same as 𝐴 ⋅ 𝑣 − 𝜆 ⋅ 𝐼 ⋅ 𝑣 = 0.

Factoring, we have 𝐴 − 𝜆𝐼 𝑣 = 0. Since 𝑣 ≠ 0, then this is only true when det(𝐴 − 𝜆𝐼) = 0. 

This is the formula we use to find eigenvalues.
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Example: Find the eigenvalues of 𝐴 =
3 1
3 5

. 

Solution: Since 𝜆 ⋅ 𝐼 =
𝜆 0
0 𝜆

, we have

det(𝐴 − 𝜆𝐼) = det
3 − 𝜆 1

3 5 − 𝜆
= 3 − 𝜆 5 − 𝜆 − 3.

This is set to 0 and solved for 𝜆:

3 − 𝜆 5 − 𝜆 − 3 = 0
𝜆2 − 8𝜆 + 15 − 3 = 0

𝜆2 − 8𝜆 + 12 = 0
𝜆 − 2 𝜆 − 6 = 0

𝜆1 = 2 and 𝜆2 = 6.

The two eigenvalues of 𝐴 

are 𝜆1 = 2 and 𝜆2 = 6, 

where the subscripts help 

us keep track of each 

eigenvalue. Now we need 

to find their eigenvectors.

(c) ASU-SoMSS - Scott Surgent. Report errors to 
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From the last slide, we found the two eigenvalues of 𝐴 =
3 1
3 5

 to be 𝜆1 = 2 and 𝜆2 = 6.

To find the eigenvectors, use a generic vector 𝑣 =
𝑎
𝑏

, and solve 𝐴 − 𝜆𝐼 𝑣 = 0. We’ll start 

with 𝜆1 = 2:
3 − 2 1

3 5 − 2
⋅

𝑎
𝑏

= 0

1 1
3 3

⋅
𝑎
𝑏

= 0.

Note that the square matrix is singular. This always happens after subtracting the diagonal 

elements by the eigenvalue and is a good check of your work. 

The top row multiplies to 𝑎 + 𝑏 = 0. If we choose 𝑎 = 1, then that forces 𝑏 = −1, so then 

we have an eigenvector associated with eigenvalue 𝜆1 = 2: it is 𝑣1 =
1

−1
. Note that 

subscripts are used to “tie” the eigenvalue and eigenvector together.
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Now let’s find the eigenvector for 𝜆2 = 6:

3 − 6 1
3 5 − 6

⋅
𝑎
𝑏

= 0

−3 1
3 −1

⋅
𝑎
𝑏

= 0.

The top row multiplies to −3𝑎 + 𝑏 = 0. If we choose 𝑎 = 1, then that forces 𝑏 = 3, so then 

we have an eigenvector associated with eigenvalue 𝜆2 = 6: it is 𝑣2 =
1
3

.

We’ll be using eigenvalues and eigenvectors to solve systems of differential equations. We can 

use them to show direction fields and gain insight as to how the solutions of a system behave.
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Example: Find the eigenvalues and eigenvectors of 𝐴 =
3 1
0 1

.

Solution: We have det
3 − 𝜆 1

0 1 − 𝜆
= 0, which gives 3 − 𝜆 1 − 𝜆 = 0. Thus, the two 

eigenvalues are 𝜆1 = 3 and 𝜆2 = 1.  (It makes no difference the order of the subscripts.)

The eigenvector for 𝜆1 = 3 is 𝑣1 =
𝑎
𝑏

, where
3 − 3 1

0 1 − 3
⋅

𝑎
𝑏

=
0
0

. 

This simplifies to
0 1
0 −2

⋅
𝑎
𝑏

=
0
0

. Note that
0 1
0 −2

 is singular. 

Multiplying the top row by the column vector
𝑎
𝑏

, we have 0𝑎 + 1𝑏 = 0, or simply 𝑏 = 0. 

However, eigenvector 𝑣1 cannot be a zero-vector. Thus, any other value may be chosen for 

𝑎. We’ll let 𝑎 = 1. Thus, an eigenvector of 𝜆1 = 3 is 𝑣1 =
1
0

.
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Solution, continued: Now we find the eigenvector for 𝜆2 = 1.  

The eigenvector for 𝜆2 = 1 is 𝑣1 =
𝑎
𝑏

, where
3 − 1 1

0 1 − 1
⋅

𝑎
𝑏

=
0
0

. 

This simplifies to
2 1
0 0

⋅
𝑎
𝑏

=
0
0

. Again, note that
2 1
0 0

 is singular. 

Multiplying the top row by the column vector
𝑎
𝑏

, we have 2𝑎 + 1𝑏 = 0.  Letting 𝑎 = 1, this 

forces 𝑏 = −2. Thus, the eigenvector of 𝜆2 = 1 is 𝑣2 =
1

−2
.

Comment: Any other vector that is dependent to the eigenvector (except the zero vector) is 

acceptable. For example, we have 𝑣2 =
1

−2
. Other acceptable eigenvectors 𝑣2  are

−1
2

,
2

−4
,

Τ1 2
−1

,
10

−20
, and so on. The same is true for 𝑣1 =

1
0

.
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Sometimes, the eigenvalues are not “convenient” integers…

Example: Find the eigenvalues and eigenvectors of 𝐴 =
2 1
3 2

.

Solution: We have det
2 − 𝜆 1

3 2 − 𝜆
= 0, which gives 𝜆2 − 4𝜆 + 1 = 0. Using the quadratic 

formula, we have 𝜆1 = 2 + 3 and 𝜆2 = 2 − 3.

The eigenvector of 𝜆1 = 2 + 3 is 𝑣1 =
𝑎
𝑏

, where
2 − 2 + 3 1

3 2 − 2 + 3
⋅

𝑎
𝑏

=
0
0

.

This simplifies to
− 3 1

3 − 3
⋅

𝑎
𝑏

=
0
0

. Is
− 3 1

3 − 3
 singular? Its determinant is

− 3 − 3 − 3 = 3 − 3 = 0, so yes, it is singular. Multiplying the top row by
𝑎
𝑏

 gives 

− 3𝑎 + 𝑏 = 0. Letting 𝑎 = 1, then 𝑏 = 3, and an eigenvector of 𝜆1 = 2 + 3 is 𝑣1 =
1

3
, 

or any non-zero multiple.
(c) ASU-SoMSS - Scott Surgent. Report errors to 
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Solution (continued): Now we find the eigenvector of 𝜆2 = 2 − 3.

It is 𝑣2 =
𝑎
𝑏

, where
2 − 2 − 3 1

3 2 − 2 − 3
⋅

𝑎
𝑏

=
0
0

.

This simplifies to
3 1

3 3
⋅

𝑎
𝑏

=
0
0

. The matrix is singular (you should verify this).

Multiplying the top row by
𝑎
𝑏

 gives 3𝑎 + 𝑏 = 0. Letting 𝑎 = 1, then 𝑏 = − 3, and an 

eigenvector of 𝜆2 = 2 − 3 is 𝑣2 =
1

− 3
, or any non-zero multiple.
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Eigenvalues may not be real numbers…

Example: Find the eigenvalues and eigenvectors of 𝐴 =
1 −4
1 1

.

Solution: We have det
1 − 𝜆 −4

1 1 − 𝜆
= 0, which simplifies to 𝜆2 − 2𝜆 + 5 = 0. Using the 

quadratic formula, we have 𝜆1 = 1 + 2𝑖 and 𝜆2 = 1 − 2𝑖.

The eigenvector for 𝜆1 = 1 + 2𝑖 is 𝑣1 =
𝑎
𝑏

, where 
1 − (1 + 2𝑖) −4

1 1 − 1 + 2𝑖
⋅

𝑎
𝑏

=
0
0

.

This simplifies to
−2𝑖 −4

1 −2𝑖
⋅

𝑎
𝑏

=
0
0

.  To be sure this is correct, we check it determinant: 

It is −2𝑖 −2𝑖 − 1 −4 = 4𝑖2 + 4 = −4 + 4 = 0. It is singular!

The top row multiplied by
𝑎
𝑏

 gives −2𝑖𝑎 − 4𝑏 = 0. If 𝑎 = 1, then 𝑏 = −
1

2
𝑖. Thus, an 

eigenvector for 𝜆1 = 1 + 2𝑖 is 𝑣1 =
1

− Τ𝑖 2
, or

2
−𝑖

, or any non-zero scalar multiple.

(c) ASU-SoMSS - Scott Surgent. Report errors to 
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Solution, continued: Now we find an eigenvector for 𝜆2 = 1 − 2𝑖.

It is 𝑣2 =
𝑎
𝑏

, where 
1 − (1 − 2𝑖) −4

1 1 − 1 − 2𝑖
⋅

𝑎
𝑏

=
0
0

.

This simplifies to
2𝑖 −4
1 2𝑖

⋅
𝑎
𝑏

=
0
0

. It is singular (you check this).

The top row multiplied by
𝑎
𝑏

 gives 2𝑖𝑎 − 4𝑏 = 0. If 𝑎 = 1, then 𝑏 =
1

2
𝑖. Thus, an eigenvector 

for 𝜆2 = 1 − 2𝑖 is 𝑣2 =
1
Τ𝑖 2

, or
2
𝑖

, or any non-zero scalar multiple.
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Example: Find the eigenvalues and eigenvectors of 𝐴 =
2 1 −1
0 1 2
0 0 3

.

Solution: We have det
2 − 𝜆 1 −1

0 1 − 𝜆 2
0 0 3 − 𝜆

= 0, which simplifies (in factored form) to

2 − 𝜆 1 − 𝜆 3 − 𝜆 = 0, so we have three eigenvalues: 𝜆1 = 2, 𝜆2 = 1 and 𝜆3 = 3.

The eigenvector for 𝜆1 = 2 is a vector 

𝑎
𝑏
𝑐

 such that 
2 − 2 1 −1

0 1 − 2 2
0 0 3 − 2

⋅
𝑎
𝑏
𝑐

=
0
0
0

. 

This simplifies to 
0 1 −1
0 −1 2
0 0 1

⋅
𝑎
𝑏
𝑐

=
0
0
0

. The square matrix is singular, but now we must 

do a little extra simplification: we find its RREF equivalent, which gives… (next slide)

(c) ASU-SoMSS - Scott Surgent. Report errors to 
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The square matrix from the last slide is simplified into its RREF equivalent, giving
0 1 0
0 0 1
0 0 0

⋅
𝑎
𝑏
𝑐

=
0
0
0

. Multiplying, we get 𝑏 = 0 and 𝑐 = 0, but no restriction on a. Thus, 

we let a be any non-zero value. The eigenvector associated with 𝜆1 = 2 is 𝑣1 =
1
0
0

, or any 

non-zero scalar multiple.

For 𝜆2 = 1, the square matrix in RREF is
1 1 0
0 0 1
0 0 0

⋅
𝑎
𝑏
𝑐

=
0
0
0

. When multiplied, the top 

row gives 𝑎 + 𝑏 = 0 and the second row gives 𝑐 = 0. From the top row, if we let 𝑎 = 1, then 

𝑏 = −1, so an eigenvector for 𝜆2 = 1 is 𝑣2 =
1

−1
0

.

For the third eigenvector, see next slide…
(c) ASU-SoMSS - Scott Surgent. Report errors to 
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For 𝜆3 = 3, the square matrix in RREF is
1 0 0
0 1 −1
0 0 0

⋅
𝑎
𝑏
𝑐

=
0
0
0

. When multiplied, the top 

row gives 𝑎 = 0 and the second row gives 𝑏 − 𝑐 = 0. From the second row, if we let 𝑏 = 1, 

then 𝑐 = 1, so an eigenvector for 𝜆3 = 3 is 𝑣3 =
0
1
1

.

In conclusion, the three eigenvalues of 𝐴 =
2 1 −1
0 1 2
0 0 3

 are 𝜆1 = 2, 𝜆2 = 1 and 𝜆3 = 3 and 

the three eigenvectors are 𝑣1 =
1
0
0

, 𝑣2 =
1

−1
0

 and 𝑣3 =
0
1
1

.
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