Solving IVPs using Laplace Transforms

MAT 275

Advantages of using Laplace Transforms to Solve IVPs

- It converts an IVP into an algebraic process in which the solution of the equation is the solution of the IVP.
- It handles initial conditions up front, not at the end of the process.
- It is "algorithmic" in that it follows a set process.
- It handles non-homogeneous forcing functions, and is especially useful when the forcing function is discontinuous or an impulse.
- It is cool.

Example: Solve y'' + 2y' - 15y = 2t, y(0) = 1, y'(0) = 0.

Solution: Apply the Laplace Transform operator to both sides:

$$L\{y'' + 2y' - 15y\} = L\{2t\}.$$

By linearity, distribute the operator and move coefficients to the front:

$$L\{y''\} + 2L\{y'\} - 15L\{y\} = 2L\{t\}.$$

Expand the left side:

$$\underbrace{s^2 L\{y\} - sy(0) - y'(0)}_{L\{y''\}} + 2\underbrace{\left(sL\{y\} - y(0)\right)}_{L\{y'\}} - 15L\{y\} = 2L\{t\}.$$

Note that this is the step in which the initial conditions are handled. (continued...)

From the previous slide, we have

$$s^{2}L\{y\} - sy(0) - y'(0) + 2(sL\{y\} - y(0)) - 15L\{y\} = 2L\{t\}.$$

Since y(0) = 1 and y'(0) = 0, we have

$$s^{2}L\{y\} - s \cdot 1 - 0 + 2(sL\{y\} - 1) - 15L\{y\} = 2L\{t\}$$

Simplify a little, distributing to clear parentheses:

$$s^{2}L\{y\} - s + 2sL\{y\} - 2 - 15L\{y\} = 2L\{t\}$$

On the right side, we have $L\{t\} = \frac{1}{s^2}$, so we have

$$s^{2}L\{y\} - s + 2sL\{y\} - 2 - 15L\{y\} = \frac{2}{s^{2}}.$$

(c) ASU Math - SOMSS - Scott Surgent. Report any errors to surgent@asu.edu

From the last slide, we have $s^2 L\{y\} - s + 2sL\{y\} - 2 - 15L\{y\} = \frac{2}{s^2}$.

Now we start to isolate $L\{y\}$:

$$L\{y\}(s^2 + 2s - 15) = \frac{2}{s^2} + s + 2.$$

Get a common denominator on the right side:

$$L\{y\}(s^2 + 2s - 15) = \frac{s^3 + 2s^2 + 2}{s^2}.$$

Divide, and we have isolated $L\{y\}$:

$$L\{y\} = \frac{s^3 + 2s^2 + 2}{s^2(s^2 + 2s - 15)}$$
(c) ASU Math - SOMSS - Scott Surgent. Report any errors to surgent@asu.edu

From the last slide, we have $L\{y\} = \frac{s^3 + 2s^2 + 2}{s^2(s^2 + 2s - 15)}$.

The solution to the differential equation is found by inverting the right side. In other words,

$$y = L^{-1} \left\{ \frac{s^3 + 2s^2 + 2}{s^2(s^2 + 2s - 15)} \right\}.$$

We need to "break apart" the big expression into smaller summands. The denominator factors:

$$\frac{s^3 + 2s^2 + 2}{s^2(s^2 + 2s - 15)} = \frac{s^3 + 2s^2 + 2}{s^2(s + 5)(s - 3)}.$$

We'll use partial fractions, starting next slide...

We need to decompose $\frac{s^3+2s^2+2}{s^2(s+5)(s-3)}$ using partial fractions.

The factor s^2 is a linear factor of multiplicity 2 so it results in two fractional summands, while the factors (s + 5) and (s - 3) are each multiplicity 1, so they result in one summand each:

$$\frac{s^3 + 2s^2 + 2}{s^2(s+5)(s-3)} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s+5} + \frac{D}{s-3} .$$

Now get a common denominator and recompose:

$$\frac{A}{s} + \frac{B}{s^2} + \frac{C}{s+5} + \frac{D}{s-3} = \frac{As(s+5)(s-3) + B(s+5)(s-3) + Cs^2(s-3) + Ds^2(s+5)}{s^2(s+5)(s-3)}$$

Then equate numerators:

$$s^3 + 2s^2 + 2 = As(s+5)(s-3) + B(s+5)(s-3) + Cs^2(s-3) + Ds^2(s+5)$$
(c) ASU Math - SOMSS - Scott Surgent. Report any errors to surgent@asu.edu

From the last slide, we have

$$s^3 + 2s^2 + 2 = As(s+5)(s-3) + B(s+5)(s-3) + Cs^2(s-3) + Ds^2(s+5)$$

On the right side, multiply to clear parentheses:

$$s^{3} + 2s^{2} + 2 = As^{3} + 2As^{2} - 15As + Bs^{2} + 2Bs - 15B + Cs^{3} - 3Cs^{2} + Ds^{3} + 5Ds^{2}$$

Now collect terms on the right side according to powers of s:

$$s^3 + 2s^2 + 2 = s^3[A + C + D] + s^2[2A + B - 3C + 5D] + s[-15A + 2B] - 15B.$$

The coefficients on the left must match the coefficients on the right. This means

For
$$s^3$$
: $A + C + D = 1$, For s : $-15A + 2B = 0$,

For
$$s^2$$
: $2A + B - 3C + 5D = 2$, For the constants: $-15B = 2$.

The four equations from the last slide form a system: 2A + B - 3C + 5D = 2

$$A + C + D = 1$$

 $2A + B - 3C + 5D = 2$
 $-15A + 2B = 0$
 $-15B = 2$

Zero-filling, we have
$$A + 0B + C + D = 1$$

$$2A + B - 3C + 5D = 2$$

$$-15A + 2B + 0C + 0D = 0$$

$$0A - 15B + 0C + 0D = 2$$

Enter this matrix in your calculator:

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 2 & 1 & -3 & 5 & 2 \\ -15 & 2 & 0 & 0 & 0 \\ 0 & -15 & 0 & 0 & 2 \end{bmatrix}$$

Using the RREF feature on a calculator, we find that

$$A = -\frac{4}{225}$$
, $B = -\frac{2}{15}$, $C = \frac{73}{200}$, $D = \frac{47}{72}$.

Believe it or not, we're almost done!

So we now have
$$\frac{s^3 + 2s^2 + 2}{s^2(s+5)(s-3)} = \frac{-4/225}{s} + \frac{-2/15}{s^2} + \frac{73/200}{s+5} + \frac{47/72}{s-3}$$
.

Thus, the solution of y'' + 2y' - 15y = 2t, y(0) = 1, y'(0) = 0 is

$$y = L^{-1} \left\{ \frac{s^3 + 2s^2 + 2}{s^2(s+5)(s-3)} \right\} = -\frac{4}{225} L^{-1} \left\{ \frac{1}{s} \right\} - \frac{2}{15} L^{-1} \left\{ \frac{1}{s^2} \right\} + \frac{73}{200} L^{-1} \left\{ \frac{1}{s+5} \right\} + \frac{47}{72} L^{-1} \left\{ \frac{1}{s-3} \right\}.$$

Recall that $L^{-1}\left\{\frac{1}{s}\right\} = 1$, $L^{-1}\left\{\frac{1}{s^2}\right\} = t$, $L^{-1}\left\{\frac{1}{s+5}\right\} = e^{-5t}$ and $L^{-1}\left\{\frac{1}{s-3}\right\} = e^{3t}$. The coefficients we just found simply move outside.

And finally... the solution is:

$$y = -\frac{4}{225} - \frac{2}{15}t + \frac{73}{200}e^{-5t} + \frac{47}{72}e^{3t}.$$

(In the previous example, every step was shown. In this example, some steps will be combined)

Example: Solve the IVP $y'' + 2y' + 10y = t^2$, y(0) = 1, y'(0) = -2.

Solution: Apply the Laplace Transform operator to both sides and simplify:

$$L\{y'' + 2y' + 10y\} = L\{t^2\}$$

Distribute $L\{y''\} + 2L\{y'\} + 10L\{y\} = L\{t^2\}$

Use forms for
$$L\{y''\}$$
 and $L\{y\}$
$$s^2 L\{y\} - sy(0) - y'(0) + 2(sL\{y\} - y(0)) + 10L\{y\} = \frac{2}{s^3}$$

Apply initial conditions

$$s^{2}L\{y\} - s + 2 + 2sL\{y\} - 2 + 10L\{y\} = \frac{2}{s^{3}}$$

$$L\{y\}(s^2 + 2s + 10) = \frac{s^4 + 2}{s^3}$$
 so that $L\{y\} = \frac{s^4 + 2}{s^3(s^2 + 2s + 10)}$.

From the previous slide, we have $L\{y\} = \frac{s^4+2}{s^3(s^2+2s+10)}$.

We need to find $y = L^{-1}\left\{\frac{s^4+2}{s^3(s^2+2s+10)}\right\}$. Using partial fractions, the expression s^3 is a linear factor s with multiplicity 3, so it results in three partial fraction summands. The expression $s^2+2s+10$ is an irreducible quadratic. Thus, the partial fraction decomposition is

$$\frac{s^4 + 2}{s^3(s^2 + 2s + 10)} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s^3} + \frac{Ds + E}{s^2 + 2s + 10}.$$

Now, recompose by getting a common denominator on the right side:

$$\frac{As^{2}(s^{2}+2s+10)+Bs(s^{2}+2s+10)+C(s^{2}+2s+10)+(Ds+E)s^{3}}{s^{3}(s^{2}+2s+10)}$$

Now, equate numerators:

$$s^4 + 2 = As^2(s^2 + 2s + 10) + Bs(s^2 + 2s + 10) + C(s^2 + 2s + 10) + (Ds + E)s^3$$

Distribute to clear parentheses

$$s^4 + 2 = As^4 + 2As^3 + 10As^2 + Bs^3 + 2Bs^2 + 10Bs + Cs^2 + 2Cs + 10C + Ds^4 + Es^3$$

Collect terms by powers of s.

$$s^4 + 2 = s^4[A + D] + s^3[2A + B + E] + s^2[10A + 2B + C] + s[10B + 2C] + [10C].$$

Thus, we have five equations in five variables:

$$A+D=1$$
 The coefficient of s^4 is 1 $2A+B+E=0$ $10A+2B+C=0$ The coefficients of s^3 , s^2 and s are 0 $10B+2C=0$ $10C=2$. The constant is 2

From the previous slide, we have five equations:

$$A + D = 1$$
, $2A + B + E = 0$, $10A + 2B + C = 0$, $10B + 2C = 0$, $10C = 2$.

The last equation gives $C = \frac{1}{5}$. This is used in the fourth equation, getting $B = -\frac{1}{25}$. These two values are substituted in the third equation, giving $A = -\frac{3}{250}$.

The value for A is substituted into the top equation, so that $D = \frac{253}{250}$. Finally, A and B are substituted in the second equation, giving $E = \frac{8}{125}$.

Thus, the partial fraction decomposition is

$$\frac{s^4 + 2}{s^3(s^2 + 2s + 10)} = \frac{-\frac{3}{250}}{s} + \frac{-\frac{1}{25}}{s^2} + \frac{\frac{1}{5}}{s^3} + \frac{\left(\frac{253}{250}\right)s + \frac{8}{125}}{s^2 + 2s + 10}.$$

We have
$$\frac{s^4+2}{s^3(s^2+2s+10)} = \frac{-\frac{3}{250}}{s} + \frac{-\frac{1}{25}}{s^2} + \frac{\frac{1}{5}}{s^3} + \frac{\left(\frac{253}{250}\right)s + \frac{8}{125}}{s^2+2s+10}$$
.

We'll concentrate on the last term for now. Complete the square:

$$\frac{\left(\frac{253}{250}\right)s + \frac{8}{125}}{s^2 + 2s + 10} = \frac{\left(\frac{253}{250}\right)s + \frac{8}{125}}{(s+1)^2 + 9}.$$

We intend to use the Laplace Transforms $L\{e^{at}\cos(bt)\} = \frac{s-a}{(s-a)^2+b^2}$ and $L\{e^{at}\sin(bt)\} = \frac{b}{(s-a)^2+b^2}$. Thus, we "need" an (s+1) in the numerator:

$$\frac{\frac{253}{250}s + \frac{8}{125}}{(s+1)^2 + 9} = \frac{\frac{253}{250}(s+1-1) + \frac{8}{125}}{(s+1)^2 + 9} = \frac{\frac{253}{250}(s+1) - \frac{253}{250} + \frac{8}{125}}{(s+1)^2 + 9} = \frac{\frac{253}{250}(s+1) - \frac{237}{250}}{(s+1)^2 + 9}$$

We have
$$\frac{s^4+2}{s^3(s^2+2s+10)} = \frac{-\frac{3}{250}}{s} + \frac{-\frac{1}{25}}{s^2} + \frac{\frac{1}{5}}{s^3} + \frac{\left(\frac{253}{250}\right)s + \frac{8}{125}}{s^2+2s+10}$$
.

Now we have

$$\frac{s^4 + 2}{s^3(s^2 + 2s + 10)} = \frac{-\frac{3}{250}}{s} + \frac{-\frac{1}{25}}{s^2} + \frac{\frac{1}{5}}{s^3} + \frac{\frac{253}{250}(s+1) - \frac{237}{250}}{(s+1)^2 + 9}$$

Split at this negative sign

$$\frac{-\frac{3}{250}}{s} + \frac{-\frac{1}{25}}{s^2} + \frac{\frac{1}{5}}{s^3} + \frac{\frac{253}{250}(s+1)}{(s+1)^2 + 9} + \frac{\frac{237}{250}}{(s+1)^2 + 9}.$$

Thus,
$$y = L^{-1} \left\{ \frac{-\frac{3}{250}}{s} + \frac{-\frac{1}{25}}{s^2} + \frac{\frac{1}{5}}{s^3} + \frac{\frac{253}{250}(s+1)}{(s+1)^2+9} - \frac{\frac{237}{250}}{(s+1)^2+9} \right\}$$
.

The final answer is on the next side.

We have
$$y = L^{-1} \left\{ \frac{-\frac{3}{250}}{s} + \frac{-\frac{1}{25}}{s^2} + \frac{\frac{1}{5}}{s^3} + \frac{\frac{253}{250}(s+1)}{(s+1)^2+9} - \frac{\frac{237}{250}}{(s+1)^2+9} \right\}$$
.

Balance with constants when necessary:

$$y = -\frac{3}{250}L^{-1}\left\{\frac{1}{s}\right\} - \frac{1}{25}L^{-1}\left\{\frac{1}{s^2}\right\} + \frac{1}{5} \cdot \frac{1}{2}L^{-1}\left\{\frac{2}{s^3}\right\} + \frac{253}{250}L^{-1}\left\{\frac{s+1}{(s+1)^2+9}\right\} - \frac{237}{250} \cdot \frac{1}{3}L^{-1}\left\{\frac{3}{(s+1)^2+9}\right\}$$

$$y = -\frac{3}{250} - \frac{1}{25}t + \frac{1}{10}t^2 + \frac{253}{250}e^{-t}\cos(3t) - \frac{79}{250}e^{-t}\sin(3t).$$
This fraction simplifies to 79/250