Laplace Transforms

Let y = f(t) be a function. Its **Laplace Transform**, written $H(s) = L\{y(t)\}$, is a function in variable *s*, defined by

$$H(s) = L\{y(t)\} = \int_0^\infty f(t)e^{-st} dt.$$

 $\sim \sim$

Case 1 (Constants). Let f(t) = c, where c is any constant. Then

$$H(s) = L\{c\} = \int_0^\infty c e^{-st} dt = c \int_0^\infty e^{-st} dt.$$

The integral $\int_{0}^{\infty} e^{-st} dt$ is found using limits: $\begin{aligned}
& \text{Equals 0 as } b \\
& \text{trends to infinity} &= 1 \\
& \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow &$ **Case 2 (exponential, base-***e***):** Let $f(t) = e^{at}$. Then

$$H(s) = L\{e^{at}\} = \int_0^\infty e^{at} e^{-st} dt = \int_0^\infty e^{(a-s)t} dt.$$

The integral is evaluated using limits:

$$\lim_{b \to \infty} \int_0^b e^{(a-s)t} dt = \lim_{b \to \infty} \left[\frac{1}{a-s} e^{(a-s)t} \right]_0^b = \lim_{b \to \infty} \left[\frac{1}{a-s} \left(e^{(a-s)b} - (e^0) \right) \right].$$

When s > a, then $\lim_{b\to\infty} \left[e^{(a-s)b}\right] = 0$ since the coefficient of *b* is negative. Also, $e^0 = 1$. So we're left with $\frac{1}{a-s}(0-1) = \frac{1}{s-a}$.

Thus, when
$$f(t) = e^{at}$$
, we have $H(s) = L\{e^{at}\} = \frac{1}{s-a}$.

Laplace Transforms for other types of function

Usually, we do not bother to calculate Laplace Transforms by hand for most functions. Instead, we make up a table for the most common functions. For example, if $y = t^n$, where *n* is a positive integer, then

$$H(s) = L\{t^n\} = \frac{n!}{s^{n+1}}.$$

If $y = \sin(bt)$, then

$$H(s) = L\{\sin(bt)\} = \frac{b}{s^2 + b^2}.$$

All of these were found by integration by parts.

If $y = \cos(bt)$, then

$$H(s) = L\{\cos(bt)\} = \frac{s}{s^2 + b^2}.$$

List of Common Laplace Transforms

Function	Laplace Transform
y = c (any constant)	$H(s) = \frac{c}{s}$
$y = t^n$	$H(s) = \frac{n!}{s^{n+1}}$
$y = e^{at}$	$H(s) = \frac{1}{s-a}$
$y = \cos bt$	$H(s) = \frac{s}{s^2 + b^2}$
$y = \sin bt$	$H(s) = \frac{b}{s^2 + b^2}$
$y = e^{at} \cos bt$	$H(s) = \frac{s-a}{(s-a)^2 + b^2}$
$y = e^{at} \sin bt$	$H(s) = \frac{b}{(s-a)^2 + b^2}$

Construction (Construction) (Constru

Laplace Transforms of Derivatives

Let y = f(t) and suppose initial conditions y = f(0) and y' = f'(0) are given. Then it is possible to find the Laplace Transform of a derivative. These are two that are most common:

For y' = f'(t), we have $H(s) = L\{y'\} = sL\{y\} - y(0)$. For y'' = f''(t), we have $H(s) = L\{y''\} = s^2L\{y\} - sy(0) - y'(0)$.

The notation y(0) is the same as y = f(0) and y'(0) is the same as y' = f'(0).

Linearity of the Laplace Transform

The operator can be distributed and any coefficients move to the front.

$$L\{c_1f_1(t) + c_2f_2(t)\} = c_1L\{f_1(t)\} + c_2L\{f_2(t)\}.$$

Example: Find $L\{t^4\}$.

Solution: Using the form
$$L\{t^n\} = \frac{n!}{s^{n+1}}$$
, we have $L\{t^4\} = \frac{4!}{s^{4+1}} = \frac{24}{s^5}$.

Example: Find $L\{e^{5t}\}$.

With practice, you'll get to know these forms better.

Solution: Using the form
$$L\{e^{at}\} = \frac{1}{s-a}$$
, we have $L\{e^{5t}\} = \frac{1}{s-5}$.

Example: Find $L{\sin(7t)}$.

Solution: Using the form
$$L{\sin(bt)} = \frac{b}{s^2+b^2}$$
, we have $L{\sin(7t)} = \frac{7}{s^2+49}$.

Example: Find $L\{e^{-2t}\cos(3t)\}$.

Solution: Using the form $L\{e^{at} \cos(bt)\} = \frac{s-a}{(s-a)^2+b^2}$, we have $L\{e^{-2t} \cos(3t)\} = \frac{s+2}{(s+2)^2+9}$. (c) ASU Math (SoMSS) - Scott Surgent. Please report errors to surgent@asu.edu Use algebra when appropriate...

Example: Find $L\{(t + 3)^2\}$.

Solution: Multiply the binomial: $L\{(t + 3)^2\} = L\{t^2 + 6t + 9\}$. Now, using the linearity of the operator, we have

 $L\{(t+3)^2\} = L\{t^2 + 6t + 9\}$ $= L\{t^2\} + 6L\{t\} + L\{9\}$ $= \frac{2!}{s^{2+1}} + 6\left(\frac{1!}{s^{1+1}}\right) + 9\left(\frac{1}{s}\right)$ $= \frac{2}{s^3} + \frac{6}{s^2} + \frac{9}{s}.$

Use trigonometric identities also...

Example: Find $L{\sin^2(3t)}$.

Solution: We use the identity $\sin^2 \theta = \frac{1}{2} - \frac{1}{2}\cos(2\theta)$. Thus,

$$L\{\sin^{2}(3t)\} = L\left\{\frac{1}{2} - \frac{1}{2}\cos(6t)\right\}$$
$$= L\left\{\frac{1}{2}\right\} - L\left\{\frac{1}{2}\cos(6t)\right\}$$
$$= \frac{1}{2s} - \frac{1}{2}\left(\frac{s}{s^{2} + 36}\right).$$

Inverting the Laplace Transform

As part of the solution process, we will need to invert the Laplace Transform, to find the function f(t) such that

$$L^{-1}{H(s)} = f(t).$$

Some are easy to do by "inspection":

Example: Find $L^{-1}\left\{\frac{7}{s}\right\}$.

Solution: Since we know that $L\{c\} = \frac{c}{s}$, then it follows that $L^{-1}\left\{\frac{7}{s}\right\} = 7$.

Example: Find $L^{-1}\left\{\frac{s}{s^2+25}\right\}$.

Solution: Sine we know that $L\{\cos(bt)\} = \frac{s}{s^2+b^2}$, then it follows that $L^{-1}\left\{\frac{s}{s^2+25}\right\} = \cos(5t)$.

Inversions, continued...

Some cases, we need to "balance" the expression with constants and their reciprocals.

Example: Find $L^{-1}\left\{\frac{1}{s^6}\right\}$.

Solution: We know that $L\{t^n\} = \frac{n!}{s^{n+1}}$, so we conclude that n = 5 in this example. However, we need 5! = 120 in the numerator to fully agree with the form. So we multiply inside by 120, and outside by $\frac{1}{120}$, and we have

$$L^{-1}\left\{\frac{1}{s^6}\right\} = \frac{1}{120}L^{-1}\left\{\frac{120}{s^6}\right\} = \frac{1}{120}t^5.$$

Example: Find $L^{-1}\left\{\frac{3}{s^2+21}\right\}$.

Solution: This looks closest to the form $L\{\sin(bt)\} = \frac{b}{s^2+b^2}$. The 3 in the numerator can be moved to the front, and from the denominator, we infer that since $b^2 = 21$, we must have $b = \sqrt{21}$.

However, the form "needs" the *b* value in the numerator. So we multiply inside by $\sqrt{21}$ and outside by $\frac{1}{\sqrt{21}}$:

$$L^{-1}\left\{\frac{3}{s^2+21}\right\} = 3L^{-1}\left\{\frac{1}{s^2+21}\right\} = 3\left(\frac{1}{\sqrt{21}}\right)L^{-1}\left\{\frac{\sqrt{21}}{s^2+21}\right\} = \frac{3}{\sqrt{21}}\sin(\sqrt{21}t).$$

Rationalizing the denominator, an equivalent form is $L^{-1}\left\{\frac{3}{s^2+21}\right\} = \frac{\sqrt{21}}{7}\sin(\sqrt{21}t)$.

Example: Find
$$L^{-1}\left\{\frac{s}{s^2+4s+9}\right\}$$
.

Solution: The denominator does not factor over the Reals, so we complete the square:

$$\frac{s}{s^2 + 4s + 9} = \frac{s}{(s+2)^2 + 5} \,.$$

This looks closest to $L\{e^{at}\cos(bt)\} = \frac{s-a}{(s-a)^2+b^2}$. We can conclude that a = -2 and $b = \sqrt{5}$.

But the numerator is not in the right form. We "need" (s + 2) in the numerator in order to agree with the form. So we add in 2 then subtract it back out, then split the numerator by grouping s + 2 and -2 as separate terms:

$$\frac{s}{(s+2)^2+5} = \frac{s+2-2}{(s+2)^2+5} = \frac{s+2}{(s+2)^2+5} - \frac{2}{(s+2)^2+5}.$$
(continued...)

From the last screen, we have

$$\frac{s}{s^2+4s+9} = \frac{s}{(s+2)^2+5} = \frac{s+2-2}{(s+2)^2+5} = \frac{s+2}{(s+2)^2+5} - \frac{2}{(s+2)^2+5}$$

The expression $\frac{s+2}{(s+2)^2+5}$ now exactly matches the form for $L\{e^{at}\cos(bt)\} = \frac{s-a}{(s-a)^2+b^2}$.

The expression $\frac{2}{(s+2)^2+5}$ almost matches the form for $L\{e^{at}\sin(bt)\} = \frac{b}{(s-a)^2+b^2}$. To make it match exactly, multiply inside by $\sqrt{5}$ and outside by $\frac{1}{\sqrt{5}}$, getting $\frac{2}{\sqrt{5}}\left(\frac{\sqrt{5}}{(s+2)^2+5}\right)$. Note that we moved the numerator 2 to the outside. Now everything matches. Thus,

$$L^{-1}\left\{\frac{s}{s^2+4s+9}\right\} = L^{-1}\left\{\frac{s+2}{(s+2)^2+5}\right\} - \frac{2}{\sqrt{5}}L^{-1}\left\{\frac{\sqrt{5}}{(s+2)^2+5}\right\} = e^{-2t}\cos\left(\sqrt{5}t\right) - \frac{2}{\sqrt{5}}e^{-2t}\sin\left(\sqrt{5}t\right).$$

Example: Find
$$L^{-1}\left\{\frac{1}{s(s^2+s-12)}\right\}$$
.

Solution: The denominator factors into linear factors:

$$\frac{1}{s(s^2 + s - 12)} = \frac{1}{s(s+4)(s-3)}.$$

We now use partial fraction decomposition:

$$\frac{1}{s(s+4)(s-3)} = \frac{A}{s} + \frac{B}{s+4} + \frac{C}{s-3}.$$

Recomposing, we have

$$\frac{1}{s(s+4)(s-3)} = \frac{A}{s} + \frac{B}{s+4} + \frac{C}{s-3} = \frac{A(s+4)(s-3) + Bs(s-3) + Cs(s+4)}{s(s+4)(s-3)}.$$

From the last screen, we have

$$\frac{1}{s(s+4)(s-3)} = \frac{A}{s} + \frac{B}{s+4} + \frac{C}{(s-3)} = \frac{A(s+4)(s-3) + Bs(s-3) + Cs(s+4)}{s(s+4)(s-3)}$$

Now, equate the two numerators:

$$1 = A(s+4)(s-3) + Bs(s-3) + Cs(s+4).$$

We can find values for *A*, *B* and *C* by choosing "convenient" values for *s*:

If s = 0, then the terms containing *B* and *C* vanish. We have

$$1 = A((0) + 4)((0) - 3) \to 1 = -12A$$
, so that $A = -\frac{1}{12}$.

(continued...)

From the last screen, we have 1 = A(s + 4)(s - 3) + Bs(s - 3) + Cs(s + 4).

If s = -4, then the A and C terms vanish, and we have

$$1 = B(-4)((-4) - 3) \to 1 = 28B$$
, so that $B = \frac{1}{28}$

If s = 3, then the A and B terms vanish, and we have

$$1 = C(3)((3) + 4) \to 1 = 21C, \text{ so that } C = \frac{1}{21}$$

Finally, we have that $L^{-1}\left\{\frac{1}{s(s^2+s-12)}\right\} = L^{-1}\left\{\frac{-1/12}{s} + \frac{1/28}{s+4} + \frac{1/21}{s-3}\right\}.$ Thus,
$$y = -\frac{1}{12} + \frac{1}{28}e^{-4t} + \frac{1}{21}e^{3t}.$$