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In this presentation, we look at linear, nth-order autonomic and homogeneous differential equations with
constant coefficients. Some examples are:

y"' =7y +12y =0, y'" +y" —4y' + 4y =0, y'+y=

One way to solve these is to assume that a solution has the form y = e™, where r is a constant to be
determined.

Example: Find the general solution of y"' — 7y’ + 12y = 0.

Solution: Let y = e"™. Therefore, y' = re”™ and y"’ = r2?e”*. Substituting, we have

(r2e™) — 7(re™) + 12e™ =
Factor|e"™(r? — 7r + 12) = 0
e"™(r —3)(r —4) = 0 [Factor again
r =3, r =4,

Thus, possible solutions are y = e3* and y = e**. How do we get a general solution?



From the last slide, we found that y = e3* and y = e** are possible solutions of y'' — 7y’ + 12y = 0.
This is easy to check: for y = e3*, we have y' = 3e3* and y’’ = 9e3*. Substituting, we have
(9e3%) — 7(3e3*) + 12(e3%) = e3*(9 —21+12) =e3%(0) =0
Fory = e**, we have y’' = 4e** and y'' = 16e**. Substituting, we have
(16e3%) — 7(4e3%) + 12(e3%) = e3%(16 — 28 + 12) = e3*(0) = 0.

The Law of Superposition states that if y; and y, are linearly independent solutions of a differential
equation of the form we are discussing, then so is their linear product: y = C;y; + C,y,. In our example, the
general solution is y = C;e3* + C,e**. (We’ll discuss “linear independence” a few slides ahead.)

We check it: y' = 3C;e3* + 4C,e** and y"' = 9C,e3* + 16C,e**. Substitute:

yn y! y
(9C,€3% + 16C,e**) — 7 (3C,e3% + 4C,e**) + 12 (C,e3* + C,e**) = 0
9C,e3% — 21C,e3% + 12C,e3* + 16C,e*™ — 28C,e** 4+ 12C,e** = 0 Group
Cle3x(9 —21+12) + C284x(16 — 28+ 12) = 0 Factor
C,23%(0) +.C,e**(0). = 0, 1t Works!




You solve these:
y'+5y ' +4y =0

Solutions:

r2e’™ 4+ 5re™ 4 4% =

e™(r*4+5r+4)=0

e *r+1)(r+4)=0
r=-—1r=—4

y = Cie™™ + C,e™ .

6y’ —y' —2y =0

To save time, we can skip
the first couple steps and
g0 to the polynomial in 7.
This is called the auxiliary
polynomial.

6r‘i—r—2=0
2r+1)@Br—-2)=0
r=—1/2,r=2/3

y = CIB(Z/S)X 1 Cze—(ljZ}x
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y'"—16y =0

rée—16=0
r—4)(r+4)=0

r=4,r=-—4

y = Cie*™ + C,e™ ¥,



What about cases where factoring the auxiliary polynomial is difficult?
Example: Find the general solution of y'"' + y"" — 4y’ — 4y = 0.
Solution: The auxiliary polynomial is 73 + 2 — 4r — 4 = 0.

To locate roots, we graph it:

Thus, we conclude that the general solution is
Rootsareatr=-2,r=-1

and = 2.
| M y = Cie”?* + C,e™™ + C3e?*.
‘-"‘-\-\.\_\_\_\_\_\-\-\-\-\‘

-5 0
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Example: Find the general solution of y"" + 3y’ —y = 0.

Solution: The auxiliary polynomial is 2 + 3r — 1 = 0. It does not factor “easily”. We use the quadratic

formula:
-3 +4/13
—@+yBZ-4D(D)  -3+V13 T 2
*= 2(1) — T2 —3-V13
2

Thus, the general solution is

y = Cle(_B-I_T\/TB)x + Cze(_g_T\h_g)x_
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Example: Find the particular solution of the IVP y"" — 2y" — 15y = 0,y(0) = 9,y'(0) = 29.

Solution: The auxiliary polynomial is r? — 2r — 15 = 0. It factors as (r — 5)(r + 3) = 0, giving two r
values, r = 5,r = —3.

Thus, the general solution is y = C;e>* + C,e™3*.

To find C; and C,, we need the first derivative of the general solution, which is y’ = 5C;e>* — 3C,e™3*.

Now the initial conditions are considered:

Multiply top
y(U):9 9:6'1"'62 ( row by 3 )27:361+3C2

yf(0)=29_}29:5C1—3C2 }29=5C1_3C2_)56=8C1_}C1=7

_}C2=2

Thus, the particular solution of the IVP is y = 7e>* + 2e73%,

This example illustrates the requirement that the two components of the solution be linearly independent.
What does that mean?
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Linear Independence and the Wronskian

Let y=C;f(x) + C,g(x) be the general solution of a linear second-order homogeneous differential
equation, and assume it has initial conditions y(x,) = A and y'(x,) = B, where A and B are any two real

numbers.

To find A and B, we need the derivative, like in the last slide: y' = C;f'(xy) + C,g'(xy). Now the initial

conditions are considered:

y(x9) = A . A =Cf(xp) + Cr9(x0)
y'(xg) =B B =Cif"(x0) + C9'(x0)

We write this as an equation in matrix form:

B=1e donl[é)

f(x0) g(x0)
o _ f'(x0) 9'(x0)
That IS, ItS determlnant cannot be O (c) ASU Math - Scott Surgent. Report errors to
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For this to work, the 2 x 2 matrix cannot be singular.

Recall that if E Eﬂ is a 2 by 2 matrix, its
determinant 1s the product of the main
(upper-left to lower right) diagonal minus
the product of the other diagonal.

That is, det = ad - be. T

L:ff:‘




The determinant of []]:’((fc())) 5,((3;0))
0 0

conclude that the two component functions f(x) and g(x) are linearly independent. This matrix is called
the Wronskian, and is written

IS f(x0) g’ (x9) — f'(x0)g(xp). If it is not identically 0, then we can

f(xo) g(xo)

W(f(Xo), g(XO)) = [f/(xo) g/(xo) .

What does this actually mean?

When given two functions, f(x) and g(x), it is easy to see if they are linearly independent by observing
that they are not scalar multiples of one another. This is equivalent to saying that f (x) # kg(x), where k is
any real non-zero number. One of the functions cannot be “made into” the other by multiplying by a
constant.

For example, f(x) = x and g(x) = x?, where x # 0, are linearly independent since

2
W(x,x?) = [316 ;x] = 2x% — x? = x%.Aslong as x # 0,then x* # 0.

It is impossible to magically turn x into x#:byvmultiplying ene:(erthe other) by some non-zero constant.



Example: The solution of the example from two slides ago, y = C,e>* + C,e 3%, is composed of the two
component functions, y; (x) = e>* and y,(x) = e~3%. The Wronskian is

W(e5% e 3%)=| € € = —3e%* — 5e%* = —8e?* = 0 for all x.

5x —3x ]
SeSx _36—3x

It is impossible to turn e>* into e ~3* by multiplying one or the other by a constant. These two component
functions are linearly independent.

Example: The functions y; (x) = e** and y,(x) = 5e** are not linearly independent. The Wronskian is

_ e4x 584x _ 8 8x
W(e**,5e**) = Lot ZOe4x] = 20e%* — 20e8* = 0.
Note that one function can be made into the other by multiplying by a constant, e.g. y;(x) = %YZ (x) or

y2(x) = 5y (x).



In cases of three or more component functions, the Wronskian is the most efficient way to show linear
Independence. It usually is not possible to make this determination “just by looking”. For example, consider

yi(x) = x% + 2x, yo(x) = 3x + 1, y3(x) = 2x% + x — 1.
The Wronskian is x> +2x 3x+1 2x°+x-1
W1, y2,Y3) =| 2x + 2 3 4x + 1
2 0
Expanding along| _ ., [Bx +1 2x%+x— 1] 44 [x +2x 3x+ 1]
bottom row. 3 4x + 1 2% + 2

Woyking out _thelb}-’ — 2[(3.%‘ + 1)(4%’ + 1) — 3(2x2 + x — 1)] + 4[3(x2 + 2.%’) — (2.1? + 2)(31‘ + 1)]

2 minor matrices

Simplifying] = 2(6x2 +4x+4) + 4‘(—3372 —2x — 2)

=12x*+8x+8—12x*—-8x—8
= 0.

Would you have been able to know that these three functions are not linearly independent “just by looking™?
11
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In general, if given n functions y,; (x), y,(x), y3(x), ..., y,,(x), they are linearly independent if it is impossible
to write one as some linear combination of any subset of the others.

From the last slide, we had y;(x) = x* + 2x, y,(x) =3x+1, y3(x) =2x%+x—1, and we showed
they are not linearly independent. This means that it is possible to express one of these as some linear

combination of the other two. Did you notice that y;(x) = 2y, (x) — y,(x)? Probably not. That is why the
Wronskian is so useful.

Typically, solutions to linear, homogeneous, autonomic nth-order differential equations appear in the
following ways:

« As functions of the form e™*,e™2*, ..., e™*, where r{, 1y, ..., 1;, are all different real numbers. These will
always be linearly independent.

« As functions of the form e™™, xe™™, x%e", .... These will also be linearly independent. (We have not seen a
case like this yet. We will.)

« As trigonometric functions sin(bx), cos(bx) or e** sin(bx),e?* cos(bx). These will also be linearly
Independent. (We haven’t seen anything like this yet either. We will).
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