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In this presentation, we look at linear, nth-order autonomic and homogeneous differential equations with 

constant coefficients. Some examples are:

One way to solve these is to assume that a solution has the form 𝑦 = 𝑒𝑟𝑥, where r is a constant to be 

determined.

Example: Find the general solution of 𝑦′′ − 7𝑦′ + 12𝑦 = 0.

Solution: Let 𝑦 = 𝑒𝑟𝑥. Therefore, 𝑦′ = 𝑟𝑒𝑟𝑥 and 𝑦′′ = 𝑟2𝑒𝑟𝑥. Substituting, we have

𝑟2𝑒𝑟𝑥 − 7 𝑟𝑒𝑟𝑥 + 12𝑒𝑟𝑥 = 0
𝑒𝑟𝑥 𝑟2 − 7𝑟 + 12 = 0
𝑒𝑟𝑥 𝑟 − 3 𝑟 − 4 = 0

𝑟 = 3, 𝑟 = 4.

Thus, possible solutions are 𝑦 = 𝑒3𝑥 and 𝑦 = 𝑒4𝑥.   How do we get a general solution?
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From the last slide, we found that 𝑦 = 𝑒3𝑥 and 𝑦 = 𝑒4𝑥 are possible solutions of 𝑦′′ − 7𝑦′ + 12𝑦 = 0.

This is easy to check: for 𝑦 = 𝑒3𝑥, we have 𝑦′ = 3𝑒3𝑥 and 𝑦′′ = 9𝑒3𝑥. Substituting, we have

9𝑒3𝑥 − 7 3𝑒3𝑥 + 12 𝑒3𝑥 = 𝑒3𝑥 9 − 21 + 12 = 𝑒3𝑥 0 = 0

For 𝑦 = 𝑒4𝑥, we have 𝑦′ = 4𝑒4𝑥 and 𝑦′′ = 16𝑒4𝑥. Substituting, we have

16𝑒3𝑥 − 7 4𝑒3𝑥 + 12 𝑒3𝑥 = 𝑒3𝑥 16 − 28 + 12 = 𝑒3𝑥 0 = 0.

The Law of Superposition states that if 𝑦1 and 𝑦2 are linearly independent solutions of a differential 

equation of the form we are discussing, then so is their linear product: 𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2. In our example, the 

general solution is 𝑦 = 𝐶1𝑒3𝑥 + 𝐶2𝑒4𝑥.  (We’ll discuss “linear independence” a few slides ahead.) 

We check it: 𝑦′ = 3𝐶1𝑒3𝑥 + 4𝐶2𝑒4𝑥 and 𝑦′′ = 9𝐶1𝑒3𝑥 + 16𝐶2𝑒4𝑥. Substitute:

9𝐶1𝑒3𝑥 + 16𝐶2𝑒4𝑥

𝑦′′

− 7 3𝐶1𝑒3𝑥 + 4𝐶2𝑒4𝑥

𝑦′

+ 12 𝐶1𝑒3𝑥 + 𝐶2𝑒4𝑥

𝑦

= 0
9𝐶1𝑒3𝑥 − 21𝐶1𝑒3𝑥 + 12𝐶1𝑒3𝑥 + 16𝐶2𝑒4𝑥 − 28𝐶2𝑒4𝑥 + 12𝐶2𝑒4𝑥 = 0

𝐶1𝑒3𝑥 9 − 21 + 12 + 𝐶2𝑒4𝑥 16 − 28 + 12 = 0
𝐶1𝑒3𝑥 0 + 𝐶2𝑒4𝑥 0 = 0.(c) ASU Math - Scott Surgent. Report errors to 

surgent@asu.edu
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You solve these:

𝑦′′ + 5𝑦′ + 4𝑦 = 0 6𝑦′′ − 𝑦′ − 2𝑦 = 0 𝑦′′ − 16𝑦 = 0

Solutions:

(c) ASU Math - Scott Surgent. Report errors to 
surgent@asu.edu
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What about cases where factoring the auxiliary polynomial is difficult?

Example: Find the general solution of 𝑦′′′ + 𝑦′′ − 4𝑦′ − 4𝑦 = 0.

Solution: The auxiliary polynomial is 𝑟3 + 𝑟2 − 4𝑟 − 4 = 0. 

To locate roots, we graph it:

    Thus, we conclude that the general solution is

𝑦 = 𝐶1𝑒−2𝑥 + 𝐶2𝑒−𝑥 + 𝐶3𝑒2𝑥.

(c) ASU Math - Scott Surgent. Report errors to 
surgent@asu.edu
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Example: Find the general solution of 𝑦′′ + 3𝑦′ − 𝑦 = 0.

Solution: The auxiliary polynomial is 𝑟2 + 3𝑟 − 1 = 0. It does not factor “easily”. We use the quadratic 

formula:

Thus, the general solution is

𝑦 = 𝐶1𝑒
−3+ 13

2 𝑥 + 𝐶2𝑒
−3− 13

2 𝑥.

(c) ASU Math - Scott Surgent. Report errors to 
surgent@asu.edu
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Example: Find the particular solution of the IVP 𝑦′′ − 2𝑦′ − 15𝑦 = 0, 𝑦 0 = 9, 𝑦′ 0 = 29.

Solution: The auxiliary polynomial is 𝑟2 − 2𝑟 − 15 = 0. It factors as 𝑟 − 5 𝑟 + 3 = 0, giving two r 

values, 𝑟 = 5, 𝑟 = −3. 

Thus, the general solution is 𝑦 = 𝐶1𝑒5𝑥 + 𝐶2𝑒−3𝑥. 

To find 𝐶1 and 𝐶2, we need the first derivative of the general solution, which is 𝑦′ = 5𝐶1𝑒5𝑥 − 3𝐶2𝑒−3𝑥.

Now the initial conditions are considered:

Thus, the particular solution of the IVP is 𝑦 = 7𝑒5𝑥 + 2𝑒−3𝑥.

This example illustrates the requirement that the two components of the solution be linearly independent. 

What does that mean?

(c) ASU Math - Scott Surgent. Report errors to 
surgent@asu.edu
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Linear Independence and the Wronskian

Let 𝑦 = 𝐶1𝑓 𝑥 + 𝐶2𝑔(𝑥) be the general solution of a linear second-order homogeneous differential 

equation, and assume it has initial conditions 𝑦 𝑥0 = 𝐴 and 𝑦′ 𝑥0 = 𝐵, where A and B are any two real 

numbers.

To find A and B, we need the derivative, like in the last slide: 𝑦′ = 𝐶1𝑓′ 𝑥0 + 𝐶2𝑔′ 𝑥0 . Now the initial 

conditions are considered:

𝑦 𝑥0 = 𝐴

𝑦′ 𝑥0 = 𝐵
→

𝐴 = 𝐶1𝑓 𝑥0 + 𝐶2𝑔(𝑥0)

𝐵 = 𝐶1𝑓′ 𝑥0 + 𝐶2𝑔′(𝑥0)
.

We write this as an equation in matrix form:

𝐴
𝐵

=
𝑓(𝑥0) 𝑔(𝑥0)

𝑓′(𝑥0) 𝑔′(𝑥0)
⋅

𝐶1

𝐶2

For this to work, the 2 × 2 matrix
𝑓(𝑥0) 𝑔(𝑥0)

𝑓′(𝑥0) 𝑔′(𝑥0)
 cannot be singular. 

That is, its determinant cannot be 0. (c) ASU Math - Scott Surgent. Report errors to 
surgent@asu.edu
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The determinant of
𝑓(𝑥0) 𝑔(𝑥0)

𝑓′(𝑥0) 𝑔′(𝑥0)
 is 𝑓 𝑥0 𝑔′ 𝑥0 − 𝑓′ 𝑥0 𝑔(𝑥0). If it is not identically 0, then we can 

conclude that the two component functions 𝑓(𝑥) and 𝑔(𝑥) are linearly independent. This matrix is called 

the Wronskian, and is written

𝑊 𝑓 𝑥0 , 𝑔 𝑥0 =
𝑓(𝑥0) 𝑔(𝑥0)

𝑓′(𝑥0) 𝑔′(𝑥0)
.

What does this actually mean?

When given two functions, 𝑓(𝑥) and 𝑔(𝑥), it is easy to see if they are linearly independent by observing 

that they are not scalar multiples of one another. This is equivalent to saying that 𝑓 𝑥 ≠ 𝑘𝑔(𝑥), where k is 

any real non-zero number. One of the functions cannot be “made into” the other by multiplying by a 

constant.

For example, 𝑓 𝑥 = 𝑥 and 𝑔 𝑥 = 𝑥2, where 𝑥 ≠ 0, are linearly independent since 

𝑊 𝑥, 𝑥2 = 𝑥 𝑥2

1 2𝑥
= 2𝑥2 − 𝑥2 = 𝑥2. As long as 𝑥 ≠ 0, then 𝑥2 ≠ 0.

It is impossible to magically turn 𝑥 into 𝑥2 by multiplying one (or the other) by some non-zero constant.(c) ASU Math - Scott Surgent. Report errors to 
surgent@asu.edu
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Example: The solution of the example from two slides ago, 𝑦 = 𝐶1𝑒5𝑥 + 𝐶2𝑒−3𝑥, is composed of the two 

component functions, 𝑦1 𝑥 = 𝑒5𝑥 and 𝑦2 𝑥 = 𝑒−3𝑥. The Wronskian is

𝑊 𝑒5𝑥, 𝑒−3𝑥 = 𝑒5𝑥 𝑒−3𝑥

5𝑒5𝑥 −3𝑒−3𝑥 = −3𝑒2𝑥 − 5𝑒2𝑥 = −8𝑒2𝑥 ≠ 0 for all 𝑥.

It is impossible to turn 𝑒5𝑥 into 𝑒−3𝑥 by multiplying one or the other by a constant. These two component 

functions are linearly independent.

Example: The functions 𝑦1 𝑥 = 𝑒4𝑥 and 𝑦2 𝑥 = 5𝑒4𝑥 are not linearly independent. The Wronskian is

𝑊 𝑒4𝑥, 5𝑒4𝑥 = 𝑒4𝑥 5𝑒4𝑥

4𝑒4𝑥 20𝑒4𝑥 = 20𝑒8𝑥 − 20𝑒8𝑥 = 0.

Note that one function can be made into the other by multiplying by a constant, e.g. 𝑦1 𝑥 =
1

5
𝑦2(𝑥) or 

𝑦2 𝑥 = 5𝑦1(𝑥).

(c) ASU Math - Scott Surgent. Report errors to 
surgent@asu.edu
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In cases of three or more component functions, the Wronskian is the most efficient way to show linear 

independence. It usually is not possible to make this determination “just by looking”. For example, consider

𝑦1 𝑥 = 𝑥2 + 2𝑥,  𝑦2 𝑥 = 3𝑥 + 1,  𝑦3 𝑥 = 2𝑥2 + 𝑥 − 1.

The Wronskian is 

Would you have been able to know that these three functions are not linearly independent “just by looking”?(c) ASU Math - Scott Surgent. Report errors to 
surgent@asu.edu
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In general, if given n functions 𝑦1 𝑥 , 𝑦2 𝑥 , 𝑦3 𝑥 , … , 𝑦𝑛(𝑥), they are linearly independent if it is impossible 

to write one as some linear combination of any subset of the others.

From the last slide, we had 𝑦1 𝑥 = 𝑥2 + 2𝑥,  𝑦2 𝑥 = 3𝑥 + 1,  𝑦3 𝑥 = 2𝑥2 + 𝑥 − 1, and we showed 

they are not linearly independent. This means that it is possible to express one of these as some linear 

combination of the other two. Did you notice that 𝑦3 𝑥 = 2𝑦1 𝑥 − 𝑦2(𝑥)? Probably not. That is why the 

Wronskian is so useful.

Typically, solutions to linear, homogeneous, autonomic nth-order differential equations appear in the 

following ways:

• As functions of the form 𝑒𝑟1𝑥, 𝑒𝑟2𝑥, … , 𝑒𝑟𝑛𝑥, where 𝑟1, 𝑟2, … , 𝑟𝑛 are all different real numbers. These will 

always be linearly independent.

• As functions of the form 𝑒𝑟𝑥, 𝑥𝑒𝑟𝑥, 𝑥2𝑒𝑟𝑥, …. These will also be linearly independent. (We have not seen a 

case like this yet. We will.)

• As trigonometric functions sin 𝑏𝑥 , cos(𝑏𝑥) or 𝑒𝑎𝑥 sin(𝑏𝑥) , 𝑒𝑎𝑥 cos(𝑏𝑥). These will also be linearly 

independent. (We haven’t seen anything like this yet either. We will).

(c) ASU Math - Scott Surgent. Report errors to 
surgent@asu.edu

12


	Slide 1: Higher-Order Linear Homogeneous & Autonomic Differential Equations with Constant Coefficients
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

