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1. The xyz Coordinate Axis System 
 
The xyz coordinate axis system, denoted 𝑅3, is represented by three real 

number lines meeting at a common point, called the origin. The three number 

lines are called the x-axis, the y-axis, and the z-axis. Together, the three axes 

are called the coordinate axes. 

 

Perspective (and other forms of artistic license) is used to represent three 

physical dimensions on a two-dimensional sheet of paper. Below is a common 

way to represent the three coordinate axes of 𝑅3. At left are the entire three axes 

with their labels. To the right is a “cleaner” version where only the positive x, y 

and z axes are drawn. The three axes meet at right angles to one another. 

 

 
 

The three axes divide 𝑅3 into eight regions, called octants. The region in which 

x, y and z are positive is called the first octant or the positive octant. The other 

octants are not numbered in any conventional way. Negative axes are drawn in 

only if the problem requires it. 

 

A point is represented by an ordered triple (𝑥, 𝑦, 𝑧), in which from the origin 

(whose ordered triple is (0,0,0)), one moves x units along the x-axis, then y units 

parallel to the y-axis, and then z units parallel to the z-axis, to arrive at the point. 

The values x, y and z are the coordinates of the point. 
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Example 1.1: Represent the point (2,3,5) on an xyz-coordinate axis system. 

 

Solution: Due to perspective, we may draw in guidelines to form a “box” in 

which one corner is the origin, and the opposite corner is the desired point: 

 

 
 

Other points are identified to show their relative positions in 𝑅3: 

 

 
 

The point (2,3,0) is called a projection of (2,3,5) onto the xy-plane, found by 

setting 𝑧 = 0. Other projections can be found similarly. 

 

         

 

The three coordinate axes, taken two at a time, form three coordinate planes. 

 

• The x-axis and the y-axis form the xy-coordinate plane and contains points 

whose ordered triples are of the form (𝑥, 𝑦, 0). The equation 𝑧 = 0 represents 

the xy-plane. 

• The x-axis and the z-axis form the xz-coordinate plane and contains points 

whose ordered triples are of the form (𝑥, 0, 𝑧). The equation 𝑦 = 0 represents 

the xz-plane. 

• The y-axis and the z-axis form the yz-coordinate plane and contains points 

whose ordered triples are of the form (0, 𝑦, 𝑧). The equation 𝑥 = 0 represents 

the yz-plane. 
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The three coordinate planes. 

 

         

 

Example 1.2: The point (100,6,4) is closest to which coordinate plane? 

 

Solution: Since the z-value of 4 is the smallest of the three coordinates, the point 

(100,6,4) is closest to the xy coordinate plane.  

 

         

 

Example 1.3: Given the point (4, −1,2), find its projections onto the xy-plane, 

the xz-plane and the yz-plane. 

 

Solution: The xy-plane is described by the equation z = 0, so the projection of 

(4, −1,2) onto the xy-plane is (4, −1,0). Similarly, the projection of (4, −1,2) 
onto the xz-plane is (4,0,2), and (4, −1,2) onto the yz-plane is (0, −1,2). 
 

         

 

Example 1.4: Given the point (4, −1,2), find its reflections across the xy-plane, 

the xz-plane, the yz-plane, and the origin. 

 

Solution: Points reflected across the xy-plane are found by negating the z 

coordinate. Thus, the reflection of (4, −1,2) across the xy-plane is (4, −1,−2). 
 

In a similar way, the reflection of (4, −1,2) across the xz-plane is (4,1,2), and 

the reflection of (4, −1,2) across the yz-plane is (−4,−1,2). 
 

To reflect across the origin, we negate all three coordinates. This is equivalent 

to reflecting a point across the xy-plane, then the xz-plane, then the yz-plane (in 

any order). Thus, the reflection of (4, −1,2) across the origin is (−4,1, −2), 
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Example 1.5 Describe the intersection of the planes x = 0 and y = 0. 

 

Solution: The equation x = 0 is the yz-plane, and the equation y = 0 is the xz-

plane, and they intersect at the z-axis. Points on the z-axis are described using 

set notation:  

 
{(𝑥, 𝑦, 𝑧) | 𝑥 = 0, 𝑦 = 0, 𝑧 ∈ 𝑅}. 

 

 
 

         

 

Example 1.6: Describe the equation x = 2 as it appears in 𝑅3. 

 

Solution: The equation x = 2 includes all points of the form (2, 𝑦, 𝑧). More 

generally, it can be described using set notation: 

 
{(𝑥, 𝑦, 𝑧)|𝑥 = 2, 𝑦 ∈ 𝑅, 𝑧 ∈ 𝑅}. 

 

It is a plane that is parallel to the yz-plane; equivalently, it is the yz-plane shifted 

two units in the positive x direction. Note that the equation x = 2 does not imply 

any restriction on the variables y and z. They can assume any real number value. 

It is important to remember the “space” in which x = 2 is defined. In 𝑅3, it is a 

plane. In 𝑅2, it would be a vertical line passing through (2,0). In 𝑅1 (or 𝑅), it is 

a point on the real number line. 

 

The graph is on the next page. 
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The plane x = 2 is parallel to the plane x = 0,  

shifted 2 units in the positive x direction. 

 

         

 

2. Distance & Midpoint 
 
Given two points 𝐴 = (𝑥0, 𝑦0 , 𝑧0) and 𝐵 = (𝑥1, 𝑦1, 𝑧1) in 𝑅3, the distance 

between A and B is given by 

 

𝐷𝐴,𝐵 = √(𝑥1 − 𝑥0)
2 + (𝑦1 − 𝑦0)

2 + (𝑧1 − 𝑧0)
2, 

 

and the midpoint between A and B is given by 

 

𝑀𝐴,𝐵 = (
𝑥0 + 𝑥1
2

,
𝑦0 + 𝑦1
2

,
𝑧0 + 𝑧1
2

). 

 

Note that the distance formula is the Pythagorean formula, and that the midpoint 

formula simply calculates the arithmetic mean (one at a time) of the x-

coordinates, the y-coordinates and the z-coordinates. 

 

         

 

Example 2.1: Find the distance from the origin to the point (3, −1,5). 
 

Solution: The origin is (0,0,0), so the distance is 

 

𝐷 = √(3 − 0)2 + (−1 − 0)2 + (5 − 0)2 = √32 + (−1)2 + 52 = √35. 
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Example 2.2: Given 𝐴 = (−2,1,4) and 𝐵 = (5,0, −7). Find the distance 

between A and B, and the midpoint of A and B. 

 

Solution: The distance between A and B is 

 

𝐷𝐴,𝐵 = √(5 − (−2))
2
+ (0 − 1)2 + (−7 − 4)2 

= √72 + (−1)2 + (−11)2 

= √171 

≈ 13.077 units. 
 

The midpoint between A and B is  

 

𝑀𝐴,𝐵 = (
−2 + 5

2
,
1 + 0

2
,
4 + (−7)

2
) = (

3

2
,
1

2
, −
3

2
). 

 

         

 

Example 2.3: Given 𝐴 = (−2,1,4) and 𝐵 = (5,0, −7). Find all points in 𝑅3 

that are equidistant from A and B. 

 

Solution: Let 𝑃 = (𝑥, 𝑦, 𝑧) represent a point (represented as an ordered triple) 

equidistant from A and from B. Thus, by the distance formulas, we have 

 

𝐷𝑃,𝐴 = √(𝑥 − (−2))
2
+ (𝑦 − 1)2 + (𝑧 − 4)2 = √(𝑥 + 2)2 + (𝑦 − 1)2 + (𝑧 − 4)2, 

 

𝐷𝑃,𝐵 = √(𝑥 − 5)
2 + (𝑦 − 0)2 + (𝑧 − (−7))

2
= √(𝑥 − 5)2 + 𝑦2 + (𝑧 + 7)2. 

 

Since P is equidistant from A and from B, we have 𝐷𝑃,𝐴 = 𝐷𝑃,𝐵. The radicals 

are squared away, then the binomials expanded by multiplication: 

 

√(𝑥 + 2)2 + (𝑦 − 1)2 + (𝑧 − 4)2 = √(𝑥 − 5)2 + 𝑦2 + (𝑧 + 7)2. 
 

(𝑥 + 2)2 + (𝑦 − 1)2 + (𝑧 − 4)2 = (𝑥 − 5)2 + 𝑦2 + (𝑧 + 7)2. 
 

𝑥2 + 4𝑥 + 4 + 𝑦2 − 2𝑦 + 1 + 𝑧2 − 8𝑧 + 16
= 𝑥2 − 10𝑥 + 25 + 𝑦2 + 𝑧2 + 14𝑧 + 49. 

 

Note that the squared terms cancel one another. We have 

 

4𝑥 + 4 − 2𝑦 + 1 − 8𝑧 + 16 = −10𝑥 + 25 + 14𝑧 + 49. 
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The variable terms are collected to one side and the constant terms to the other: 

 

14𝑥 − 2𝑦 − 22𝑧 = 53. 
 

the equation 14𝑥 − 2𝑦 − 22𝑧 = 53 is true upon substitution by all points that 

are equidistant from A and B. This forms a plane Q in 𝑅3, which can be written 

as a set with z is isolated in terms of x and y: 

 

𝑄 = {(𝑥, 𝑦, 𝑧) | 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅, 𝑧 =
7

11
𝑥 −

1

11
𝑦 −

53

22
}. 

 

 

To check this, we can select arbitrary values for x and y. For example, let x = 11 

and y = 22. This forces 𝑧 =
57

22
, so a point on Q is 𝑃 = (11,22,

57

22
). The distance 

from A to P, and from B to P, are 

 

𝐷𝐴,𝑃 = √(−2 − 11)
2 + (1 − 22)2 + (4 −

57

22
)
2
= √132 + (−21)2 + (

31

22
)
2
≈ 24.738,  

 

𝐷𝐵,𝑃 = √(5 − 11)
2 + (0 − 22)2 + (−7 −

57

22
)
2

= √(−6)2 + (−22)2 + (−
211

22
)
2

 

≈ 24.738.  
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3. Triangles & Collinearity 
 
Three points A, B and C form a triangle in that A, B and C are the vertices 

(corners) of the triangle, and that line segments 𝐴𝐵̅̅ ̅̅ , 𝐴𝐶̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅  form the sides 

(edges). 

 

Letting a, b and c represent the lengths of the sides of a triangle, and assuming 

c is the largest of the three values, the triangle inequality states that 𝑐 ≤ 𝑎 + 𝑏, 

which simply states that the longest side of a triangle cannot be greater than the 

sum of the lengths of the two shorter sides: 

 

 
 

If 𝑐 = 𝑎 + 𝑏, then the length of the longest side is exactly the sum of the lengths 

of the two shorter sides, which can only happen when points A, B and C lie on 

a common line. In such a case, points A, B and C are collinear.  

 

The three side-lengths of a triangle are related by the law of cosines: 

 

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝜃, 
 

where c is assumed to be the length of the longest side and 𝜃 is the angle formed 

at point C, where side segments 𝐴𝐶̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅  meet. If 𝜃 = 90°, then cos 𝜃 = 0, 

and we have the Pythagorean Formula, which relates the three side-lengths of a 

right triangle: 

 

𝑐2 = 𝑎2 + 𝑏2. 
 

         

 

Example 3.1: Show that the points 𝐴 = (1,0,2), 𝐵 = (−2,3,1) and 𝐶 =
(0,4, −2) are the vertices of a right triangle. 

 

Solution: Find the lengths of the three sides of the triangle: 

  

𝐷𝐴,𝐵 = √(1 − (−2))
2 + (0 − 3)2 + (2 − 1)2 = √32 + (−3)2 + 12 = √19, 

𝐷𝐴,𝐶 = √(1 − 0)
2 + (0 − 4)2 + (2 − (−2))2 = √12 + (−4)2 + 42 = √33, 

𝐷𝐵,𝐶 = √(−2 − 0)
2 + (3 − 4)2 + (1 − (−2))2 = √(−2)2 + (−1)2 + 32 = √14. 
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The length of the segment 𝐴𝐶̅̅ ̅̅  is the longest, and we use the Pythagorean 

Formula: 

 

(√33)
2
= (√19)

2
+ (√14)

2
. 

 

Since 33 = 19 + 14 is a true statement, the triangle formed by A, B and C is a 

right triangle. 

 

When sketching a triangle, we can name the sides as is convenient. In the 

preceding example, segment 𝐴𝐶̅̅ ̅̅  would be given length b, if we followed the 

drawing on the previous page. This is fine, as long as in this case, we remember 

that b is the length of the longest side, and that c and a are the lengths of the two 

shorter sides. 

 

         

 

Example 3.2: Show that 𝐴 = (2,3,5), 𝐵 = (6,1,6) and 𝐶 = (14,−3,8) are 

collinear. 

 

Solution: If A, B and C lie on the same line, then the largest distance between 

any of the three points will be equal to the sum of the two smaller distances.  

 

The distances are: 

 

𝐷𝐴,𝐵 = √(6 − 2)
2 + (1 − 3)2 + (6 − 5)2 

= √42 + (−2)2 + 12 

= √21, 
 

𝐷𝐴,𝐶 = √(14 − 2)
2 + (−3 − 3)2 + (8 − 5)2 

= √122 + (−6)2 + 32 

= √189 

= 3√21, 
 

𝐷𝐵,𝐶 = √(14 − 6)
2 + (−3 − 1)2 + (8 − 6)2 

= √82 + (−4)2 + 22 

= √84 = 2√21. 
 

Note that the distance between A and C is the longest, and that it is the sum of 

the distance between A and B, and the distance between B and C. That is, 

3√21 = 2√21 + √21, and so we conclude that A, B and C are collinear. 
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4. Spheres and Ellipsoids 
 

A sphere is a set of ordered triples (𝑥, 𝑦, 𝑧) that are of a fixed distance from a 

single fixed point (𝑥0, 𝑦0, 𝑧0), called the center, and the distance is called the 

radius, 𝑟. Using the distance formula, the simplified formula for a sphere can 

be written as 

 

(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 + (𝑧 − 𝑧0)
2 = 𝑟2. 

 

         

 

Example 4.1: Find the equation of a sphere with center (2, −1,9) and radius 5. 

 

Solution: The sphere is given by  

 

(𝑥 − 2)2 + (𝑦 − (−1))2 + (𝑧 − 9)2 = 52, 
 

which simplifies to (𝑥 − 2)2 + (𝑦 + 1)2 + (𝑧 − 9)2 = 25. 

 

         

 

Example 4.2: Find the equation of a sphere on which the two points 𝐴 =
(4,1, −1) and 𝐵 = (6,7,9) lie directly opposite one another (that is, the line 

through them forms a diameter of the sphere. Such points are called antipodal 

points). 

 

Solution: The center is the midpoint of A and B: 

 

𝑀𝐴,𝐵 = (
4 + 6

2
,
1 + 7

2
,
−1 + 9

2
) = (5,4,4). 

 

The distance from the midpoint to point A is: 

 

𝐷𝑀,𝐴 = √(5 − 4)
2 + (4 − 1)2 + (4 − (−1))

2
= √12 + 32 + 52 = √35. 

 

(This is also the distance from the midpoint to B.) 

 

This is the radius, and since 𝑟 = √35, then 𝑟2 = 35. Thus, the sphere is  

 

(𝑥 − 5)2 + (𝑦 − 4)2 + (𝑧 − 4)2 = 35. 
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Example 4.3: Find the equation of the largest possible sphere with center 

(4,2,5) that is fully contained within the first octant (tangentially “touching” a 

coordinate plane is permissible). 

 

Solution: The y-coordinate of 2 is the smallest of the three coordinates, and is 

2 units from the xz-coordinate plane. This will be the radius. Thus, the sphere is 

given by  

 

(𝑥 − 4)2 + (𝑦 − 2)2 + (𝑧 − 5)2 = 4. 
 

         

 

Example 4.4: The sphere (𝑥 + 6)2 + (𝑦 − 1)2 + (𝑧 − 4)2 = 100 intersects 

the yz-coordinate plane, forming a circle. What is the radius of this circle? 

 

Solution: The yz-coordinate plane is given by 𝑥 = 0, so we substitute this into 

the equation of the sphere, and simplify: 

 

((0) + 6)
2
+ (𝑦 − 1)2 + (𝑧 − 4)2 = 100 

62 + (𝑦 − 1)2 + (𝑧 − 4)2 = 100 

(𝑦 − 1)2 + (𝑧 − 4)2 = 64. 
 

The intersection of the sphere with the yz-coordinate plane results in a circle of 

radius √64 = 8. 

 

         

 

A sphere may also be written as 𝑥2 + 𝑦2 + 𝑧2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹𝑧 = 𝐺, in which 

case completing the square is needed to rewrite the sphere in simplified form. 

 

Example 4.5: Find the center and radius of the sphere 𝑥2 + 2𝑥 + 𝑦2 − 6𝑦 +
𝑧2 + 4𝑧 = 22. 

 

Solution: Complete the square three times: 

 

𝑥2 + 2𝑥 + 𝟏⏟        
(𝑥+1)2

+ 𝑦2 − 6𝑦 + 𝟗⏟        
(𝑦−3)2

+ 𝑧2 + 4𝑧 + 𝟒⏟        
(𝑧+2)2

= 22 + 𝟏 + 𝟗 + 𝟒⏟          
36

. 

 

Simplified, we have 

 

(𝑥 + 1)2 + (𝑦 − 3)2 + (𝑧 + 2)2 = 36. 
 

Thus, the sphere has a center of (−1,3, −2) and a radius of 𝑟 = √36 = 6. 
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Example 4.6: Explain why 𝑥2 + 𝑦2 + 𝑧2 + 4𝑥 + 6𝑦 + 10𝑧 + 50 = 0 cannot 

represent a sphere. 

 

Solution: Completing the square three times, we have 

 

𝑥2 + 4𝑥 + 4 + 𝑦2 + 6𝑦 + 9 + 𝑧2 + 10𝑥 + 25 = −50 + 4 + 9 + 25 

(𝑥 + 2)2 + (𝑦 + 3)2 + (𝑧 + 5)2 = −12. 
 

The right side of the equation is negative, while the left side of the equation will 

always be a non-negative value, so this equation cannot have a solution in 𝑅3. 

This equation is inconsistent (has no solutions). 

 

         

 

An axis intercept in 𝑅3 is found by setting two of the variables to 0. Thus, the 

x-axis intercept is given by the ordered triple (𝑥, 0,0), the y-axis intercept is 

given by the ordered triple (0, 𝑦, 0), and the z-axis intercept is given by the 

ordered triple (0,0, 𝑧). 
 

Example 4.7: Find the axis intercepts of the sphere (𝑥 + 1)2 + (𝑦 − 4)2 +
(𝑧 − 6)2 = 41. 

 

Solution: When 𝑥 = 0 and 𝑦 = 0, we have 

 

((0) + 1)
2
+ ((0) − 4)

2
+ (𝑧 − 6)2 = 41 

12 + (−4)2 + (𝑧 − 6)2 = 41 

1 + 16 + (𝑧 − 6)2 = 41 

(𝑧 − 6)2 = 24 

𝑧 − 6 = ±√24 

𝑧 = 6 ± 2√6. 
 

There are two z-axis intercepts, at (0,0,6 + 2√6) and (0,0,6 − 2√6). 

 

When 𝑥 = 0 and 𝑧 = 0, we have 

 

((0) + 1)
2
+ (𝑦 − 4)2 + ((0) − 6)

2
= 41 

12 + (𝑦 − 4)2 + (−6)2 = 41 

1 + (𝑦 − 4)2 + 36 = 41 

(𝑦 − 4)2 = 4 

𝑦 − 4 = ±2 

𝑦 = 4 ± 2. 
 

There are two y-axis intercepts, at (0,6,0) and (0,2,0). 
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When 𝑦 = 0 and 𝑧 = 0, we have 

 

(𝑥 + 1)2 + ((0) − 4)
2
+ ((0) − 6)

2
= 41 

(𝑥 + 1)2 + (−4)2 + (−6)2 = 41 

(𝑥 + 1)2 + 16 + 36 = 41 

(𝑥 + 1)2 = −11. 
 

Taking the square root of −11 results in a non-real value. Thus, there are no x-

axis intercepts. 

 

         

 

Ellipsoids 

 

An ellipsoid centered at the origin is written in the form 

 

𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
= 1, 

 

where (±𝑎, 0,0) are the x-axis intercepts, (0, ±𝑏, 0) are the y-axis intercepts, 

and (0,0, ±𝑐) are the z-axis intercepts. The semi-principal axis radii are a, b 

and c, respectively. The semi-principal diameters are 2a, 2b and 2c. 

 

If the ellipsoid is centered at (𝑥0, 𝑦0, 𝑧0), the equation becomes 

 

(𝑥 − 𝑥0)
2

𝑎2
+
(𝑦 − 𝑦0)

2

𝑏2
+
(𝑧 − 𝑧0)

2

𝑐2
= 1 

 

         

 

Example 4.8: Find the axis intercepts of the ellipsoid 

 

𝑥2

9
+ 𝑦2 +

𝑧2

12
= 1. 

 

Solution: The x-axis intercepts are (±3,0,0), the y-axis intercepts are (0, ±1,0) 

and the z-axis intercepts are (0,0, ±2√3). Note that this ellipsoid is centered at 

the origin. 

 

The semi-principal radii are 3, 1 and 2√3 units in the direction of the x-axis, y-

axis and z-axis, respectively. The semi-principal diameters are twice these 

figures, or 6, 2 and 4√3 units in the direction of the x-axis, y-axis and z-axis. 

 

Completing the square may be necessary to determine the ellipsoid’s center and 

axis radii. 
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Example 4.9: Find the center, the semi-principal axis radii, and the axis 

intercepts of 

 

𝑥2 + 2𝑦2 + 4𝑧2 + 2𝑥 − 8𝑦 + 24𝑧 = −5. 
 

Solution: Group the terms by variable, and factor any constants from each 

grouping: 

 

𝑥2 + 2𝑥 + 2𝑦2 − 8𝑦 + 4𝑧2 + 24𝑧 = −5 

𝑥2 + 2𝑥 + 2(𝑦2 − 4𝑦) + 4(𝑧2 + 6𝑧) = −5. 
 

Complete the square three times: 

 

𝑥2 + 2𝑥 + 𝟏 + 2(𝑦2 − 4𝑦 + 𝟒) + 4(𝑧2 + 6𝑧 + 𝟗) = −5 + 𝟏 + 𝟖 + 𝟑𝟔 

 

(𝑥 + 1)2 + 2(𝑦 − 2)2 + 4(𝑧 + 3)2 = 40. 
 

Note that the 8 on the right side is the “2 times 4” on the left side, and the 36 on 

the right is the “4 times 9” on the left. Divide now by 40: 

 
(𝑥 + 1)2

40
+
(𝑦 − 2)2

20
+
(𝑧 + 3)2

10
= 1. 

 

The ellipsoid’s center is (−1,2, −3) and its semi-principal axis radii are 𝑎 =

√40 = 2√10 in the direction parallel to the x-axis, 𝑏 = √20 = 2√5 in the 

direction parallel to the y-axis, and 𝑐 = √10 in the direction parallel to the z-

axis. 

 

For the axis intercepts, we set two variables to 0, and solve for the third variable. 

For example, to find the z-axis intercepts, set x = 0 and y = 0. This can be done 

in the original equation: 

 

𝑥2 + 2𝑦2 + 4𝑧2 + 2𝑥 − 8𝑦 + 24𝑧 = −5 

(0)2 + 2(0)2 + 4𝑧2 + 2(0) − 8(0) + 24𝑧 = −5 

4𝑧2 + 24𝑧 + 5 = 0. 
 

Using the quadratic formula, we have  

 

𝑧 =
−24 ± √242 − 4(4)(5)

2(4)
=
−24 ± √496

8
=
−24 ± 4√31

8
= −3 ±

1

2
√31. 

 

Thus, the z-axis intercepts are (0,0, −3 ±
1

2
√31). In a similar way, the y-axis 

intercepts are (0,4 ± √6, 0). There are no x-axis intercepts (you verify). 
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5. Multivariable Functions 
 
A function in 𝑅3 has two independent variables, and a third variable dependent 

on the first two. If x and y represent the independent variables, and z the 

dependent variable, a function in two variables can be written 𝑧 = 𝑓(𝑥, 𝑦). 
Depending on the situation, we can let y be the dependent variable, so that 𝑦 =
𝑓(𝑥, 𝑧), or let x be the dependent variable, so that 𝑥 = 𝑓(𝑦, 𝑧). 
 

A function in three variables would exist in 𝑅4 and would be written 𝑤 =
𝑓(𝑥, 𝑦, 𝑧). Its points would be called 4-tuples, written (𝑥, 𝑦, 𝑧, 𝑤). In general, a 

function in 𝑛 variables exists in 𝑅𝑛+1, has 𝑛 independent variables and one 

dependent variable. Any function with n independent variables is called a 

multivariable function, or an 𝒏-variable function. A point in 𝑅𝑛 is called an 

𝒏-tuple. Note that an 𝑛-variable function produces (n + 1)-tuples, since the final 

position will be the dependent variable. We often refer to 2-tuples as pairs, 3-

tuples as triples, and so on. 

 

The domain of an 𝑛-variable function is the set of ordered 𝑛-tuples in 𝑅𝑛 for 

which the function is defined. The range is the set of values in 𝑅1 for which the 

dependent variable can assume. The visual representation of the set of points 

(ordered n-tuples) for which a function is defined is called a graph. In 𝑅3, the 

graph is often called a surface. 

 

         

 

Example 5.1: Given 𝑧 = 𝑓(𝑥, 𝑦) =
1

𝑥
+ 2𝑦. Find 𝑓 (

1

3
, 4) and the domain of 𝑓. 

 

Solution: We have  

𝑓 (
1

3
, 4) =

1

1 3⁄
+ 2(4) 

= 3 + 8 

= 11. 

 

This is an ordered triple (
1

3
, 4, 11) on the graph of 𝑓. Note that since x is in the 

denominator, we must have 𝑥 ≠ 0. Thus, the domain is the set of x and y values 

for which 𝑥 ≠ 0. Using set-builder notation, we can write this as 

 

Dom 𝑓 = {(𝑥, 𝑦)| 𝑥 ∈ 𝑅 and 𝑦 ∈ 𝑅 such that 𝑥 ≠ 0}. 
 

The range can be inferred indirectly. For example, for any z-value, it is possible 

to find at least one ordered pair (𝑥, 𝑦) that produces z. From this, we can state 

that the range of 𝑓 is 

 

Ran 𝑓 = {𝑧 | 𝑧 ∈ 𝑅}. 
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Example 5.2: Describe the graph of 𝑦 = 2𝑥 + 1 as it appears in 𝑅3.  

 

Solution: In 𝑅2, this is a line on an xy-coordinate axis system with y-intercept 

(0,1) and a slope of 2. It is sketched below: 

 

 
 

In 𝑅3, we allow z to be any value. Thus, the graph of 𝑦 = 2𝑥 + 1 in 𝑅3 is the 

set of all ordered triples of the form (𝑥, 2𝑥 + 1, 𝑧). Note that we may choose x 

and z independently of one another. However, once x is chosen, y is then 

determined by the formula 𝑦 = 2𝑥 + 1. Thus, in this example, we would let x 

and z be the independent variables, and y the dependent variable. The domain is 
{(𝑥, 𝑧)| 𝑥 ∈ 𝑅, 𝑧 ∈ 𝑅} and the range is {𝑦|𝑦 = 2𝑥 + 1}. 
 

The graph of 𝑦 = 2𝑥 + 1 in 𝑅3 is a plane that extends into the positive and 

negative z directions: 
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Example 5.3: Find the domain of 𝑧 = 𝑓(𝑥, 𝑦) =
1

2𝑥−𝑦
. 

 

Solution: The expression 2𝑥 − 𝑦 cannot be zero, 2𝑥 − 𝑦 ≠ 0, or 𝑦 ≠ 2𝑥. Using 

set-builder notation, this is  

 

Dom 𝑓 = {(𝑥, 𝑦)| All 𝑥 ∈ 𝑅 and 𝑦 ∈ 𝑅 such that 𝑦 ≠ 2𝑥}. 
 

Thus, we may choose x and y independently of one another as long as 𝑦 ≠ 2𝑥. 

For example, 𝑓(3,1) is defined, but 𝑓(2,4) is not defined. The range is inferred 

indirectly. If we set z = 0, then we have 
1

2𝑥−𝑦
= 0. There are no ordered pairs 

(𝑥, 𝑦) that solve this. However, if 𝑧 = 𝑘, then 
1

2𝑥−𝑦
= 𝑘 is solvable. Thus, the 

range is 

 

Ran 𝑓 = {𝑧 | 𝑧 ∈ 𝑅 except 𝑧 = 0}. 
 

         

 

Determining domain is typically routine, in that we avoid zeros in the 

denominator, negative values inside an even-index root, and non-positive entries 

within a logarithm. The table below summarizes domains for common 

functions. 

 

Type of function Restrictions on the Domain 

n-variable polynomials such as 𝑥2 +
3𝑥 − 1 or 𝑥𝑦3 + 𝑥2𝑦 − 2𝑥. 

No restrictions. 

A radical expression such as 

√𝑥3 − 2𝑦
𝑛

, where n is an integer ≥ 2. 

(n is called the index) 

 

No restrictions on the expression 

inside the radical if the index is 

odd. If the index is even, then the 

expression must be greater than or 

equal to 0. 

Rational expression such as 
𝑥2−1

3𝑥−𝑦2
 . The denominator must not equal 0. 

Exponential functions such as 2𝑥 or 

𝑥𝑦. 

The base must be strictly greater 

than 0, and not equal to 1. 

Logarithms such as ln(3𝑦 − 5𝑥). The expression inside the 

logarithm must be strictly greater 

than 0. 

Sine and cosine functions. No restrictions. 

Tangent functions. 

 

The expression must not equal 

±
𝑛𝜋

2
, where n is an odd integer. 

 

Determining range is not as formulaic. We often use indirect means to infer the 

domain. For example, we might try setting the function equal to a particular z-

value, and work backwards to see it it’s possible to solve the equation. If not, 
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then that z-value is outside the range. This method is highly inefficient. Often, 

the range is inferred by viewing the graph using software. 

 

         

 

Example 5.4: Find the domain and range of 𝑧 = 𝑔(𝑥, 𝑦) = √81 − 𝑥2 − 𝑦2. 

 

Solution: The expression inside the radical must be non-negative. Thus, we 

have 

 

81 − 𝑥2 − 𝑦2 ≥ 0. 
 

Rearranging the terms, the domain of 𝑔 is { (𝑥, 𝑦) | 𝑥2 + 𝑦2 ≤ 81}. 
 

The surface of 𝑔 is a hemisphere of radius 9, and its domain is a filled-in circle 

of radius 9, centered at (0,0) on the xy-plane. The range of 𝑔 is {𝑧 | 0 ≤ 𝑧 ≤ 9 }. 
 

         

 

Example 5.5: Find the domain and range of 𝑧 = ℎ(𝑥, 𝑦) =

√4 − (𝑥 − 3)2 + (𝑦 + 1)2 + 5. 

 

Solution: This surface is a hemisphere centered at (3, −1,5) with radius 2. It 

creates a “shadow” onto the xy-plane that is a circle centered at (3, −1) with 

radius 2. These are the permissible ordered pairs (𝑥, 𝑦) that will result in a real-

value output z.  Thus, the domain of this sphere is  

 

Dom ℎ = { (𝑥, 𝑦) | (𝑥 − 3)2 + (𝑦 + 1)2 ≤ 4}. 
 

The range is  

 

Ran ℎ = {𝑧 | 5 ≤ 𝑧 ≤ 7 }. 
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Given a multivariable function 𝑧 = 𝑓(𝑥, 𝑦), we can set 𝑥 = 0 and sketch its 

trace on the yz-plane, and then set 𝑦 = 0 and sketch its trace on the xz-plane. 

From the two traces, it may be possible to infer the actual surface that results. 

 

Example 5.6: Sketch 𝑧 = 𝑥2 + 𝑦2. 

 

Solution: When 𝑥 = 0, we have 𝑧 = 𝑦2, which is a parabola opening in the 

positive z direction on the yz-plane. Similarly, when 𝑦 = 0, we have another 

parabola 𝑧 = 𝑥2 opening in the positive z direction on the xz-plane. Together, 

the two parabola traces suggest that the surface of the function 𝑧 = 𝑥2 + 𝑦2 is 

a parabolic bowl, or paraboloid. 

 

 
 

Note that this paraboloid has a vertex at (0,0,0). If positive z is considered “up”, 

then we say this paraboloid opens upward. The domain is {(𝑥, 𝑦)|𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅}, 
and the range is {𝑧|𝑧 ≥ 0}. 
 

         

 

Example 5.7: Describe the surface of 𝑧 = −𝑥2 + 4𝑥 − 𝑦2 − 2𝑦. 

 

Solution: Completing the square twice, we have 

 

𝑧 = −𝑥2 + 4𝑥 − 𝑦2 − 2𝑦 

= −(𝑥2 − 4𝑥) − (𝑦2 + 2𝑦) 
= −(𝑥2 − 4𝑥 + 4) − (𝑦2 + 2𝑦 + 1) + 4 + 1 

= −(𝑥 − 2)2 − (𝑦 + 1)2 + 5. 
 

This is a paraboloid that has been shifted 2 units in the x-direction, –1 unit in the 

y direction, and 5 units in the z direction. The leading negatives in front of the 

quadratic terms suggest the paraboloid opens in the negative z direction. Thus, 

it has the identical shape as the paraboloid in the previous example, but it has a 

vertex at (2, −1,5) and opens “downward”. The domain is {(𝑥, 𝑦)|𝑥 ∈ 𝑅, 𝑦 ∈
𝑅}, and the range is {𝑧|𝑧 ≤ 5}. 
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Example 5.8: Describe the surface 𝑧 = √𝑥2 + 𝑦2. 

 

Solution: First, note that 𝑥2 + 𝑦2 ≥ 0 for all x and y, so that the domain is 
{(𝑥, 𝑦)|𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅}. Note also that the radical results in non-negative values 

for z, so that the range is {𝑧|𝑧 ≥ 0}. 
 

We sketch traces. For example, let 𝑦 = 0, so that means 𝑧 = √𝑥2 + 0 = ±𝑥. 

Similarly, when 𝑥 = 0, we have 𝑧 = √0 + 𝑦2 = ±𝑦. These are lines that form 

a “V” shape in their respective planes. The cross sections parallel to the xy-plane 

are circles, and together, these facts suggest that 𝑧 = √𝑥2 + 𝑦2 is a cone. 

 

 
 

The cone opens in the positive z direction, indicating that the origin is a 

minimum. The surface given by 𝑧 = −√𝑥2 + 𝑦2 would be a cone opening in 

the negative z direction, where the origin would be a maximum, assuming that 

positive z is “up”. 

 

         

 

Example 5.9: A cone with circular cross sections and the vertex at the origin 

opens in the positive z direction, passing through the point (1,3,7). Find the 

equation of the cone. 

 

Solution: The general equation of the cone is 𝑧 = 𝑎√𝑥2 + 𝑦2, where a can be 

determined by evaluating at a known point on the cone’s surface. We have 

 

7 = 𝑎√12 + 32 

7 = 𝑎√10 

𝑎 =
7

√10
 . 

 

Thus, the cone’s equation is 𝑧 =
7

√10
√𝑥2 + 𝑦2 = 7√

𝑥2

10
+
𝑦2

10
. 
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Example 5.10: A cone with circular cross sections and the vertex at the origin 

opens in the positive z direction, such that the angle at the vertex is 
2𝜋

3
 radians. 

Find the equation of the cone. 

 

Solution: Viewing a trace of the cone, we can see the vertex angle. Note that 

the side of the cone is at an angle of 
𝜋

3
 radians (half of the vertex angle) from the 

positive z-axis. From this, we can determine a point on the cone’s surface. In the 

images that follow, we set 𝑦 = 0 and choose 𝑧 = 1. Using a 30-60-90 triangle 

with shortest leg of length 1, the longer leg is of length √3. This is our x value, 

and the point is (√3, 0, 1). Thus, we have 

 

𝑧 = 𝑎√𝑥2 + 𝑦2 

1 = 𝑎√(√3)
2
+ 02 

1 = 𝑎√3 

𝑎 =
1

√3
  or  

√3

3
. 

 

The cone’s equation is 𝑧 =
√3

3
√𝑥2 + 𝑦2. The images and the final cone are 

below. 

 

 
Using right triangles to help find a point on the cone’s surface. 
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Example 5.11: Describe the surface 𝑧 = 𝑥2 − 𝑦2. 

 

Solution: When 𝑦 = 0, the surface’s trace on the xz-plane is 𝑦 = 𝑥2, a parabola 

that opens in the positive z direction. When 𝑥 = 0, the trace on the yz-plane is 

𝑧 = −𝑦2, a parabola that opens in the negative z direction.  

 

 
When a plane parallel to the xz-plane intersect the surface 𝑧 = 𝑥2 − 𝑦2, it forms 

a parabola that opens up. When a plane parallel to the yz-plane intersects the 

surface, it forms a parabola that opens down. 

 

 
When a plane parallel to the xy-plane intersects 

the surface, it forms a hyperbola. 

 

The surface is called a hyperbolic paraboloid. It is shaped like a saddle and is 

informally called a saddle. The origin in this case is the saddle point. 

 

 
Graph of 𝑧 = 𝑥2 − 𝑦2. 

 

 



26  

 

Example 5.12: Describe the surface 𝑥2 + 𝑦2 − 𝑧2 = 1. 

 

Solution: We can infer the surface’s appearance by setting each variable to 0, 

one at a time. 

 

When x = 0, we have 𝑦2 − 𝑧2 = 1, which is a hyperbola in the yz-plane 

where the two halves open in the positive and negative y-directions. 

 

When y = 0, we have 𝑥2 − 𝑧2 = 1, which is a hyperbola in the xz-plane 

where the two halves open in the positive and negative x-directions. 

 

When z = 0, we have 𝑥2 + 𝑦2 = 1, which is a circle of radius 1 in the xy-

plane, centered at the origin. 

 

The resulting shape is called a hyperboloid of one sheet. Note that it does not 

intersect the z-axis (the z-axis is the axis of symmetry of this surface). Any plane 

parallel to the xy-plane (that is, any plane with the equation z = k) will intersect 

this surface forming a circle. The surface is “narrowest” when z = 0.  

 

 
 

         

 

Example 5.13: Describe the surface 𝑥2 − 𝑦2 − 𝑧2 = 1. 

 

Solution: As in the previous example, we can infer the surface’s appearance by 

setting each variable to 0, one at a time. 

 

When x = 0, we have −𝑦2 − 𝑧2 = 1, which has no solution since the left 

side will always be 0 or negative, while the right side is 1. The surface will 

not intersect the yz-plane. 

 

When y = 0, we have 𝑥2 − 𝑧2 = 1, which is a hyperbola in the xz-plane 

where the two halves open in the positive and negative x-directions. 
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When z = 0, we have 𝑥2 − 𝑦2 = 1, which is a hyperbola in the xy-plane 

where the two halves open in the positive and negative x-directions. 

 

The resulting shape is called a hyperboloid of two sheets. Because it does not 

intersect the yz-plane, the surface is split into two symmetric halves. In fact, it 

is not difficult to show that the surface is not defined when −1 < 𝑥 < 1. 

 

 
 

In this example, the x-axis is the axis of symmetry. Any plane that includes the 

x-axis will intersect the surface forming hyperbolas. 

 

         

 

It may be tempting to assume that a hyperboloid of one or two sheets can be 

“detected” by the number of quadratic terms with a negative coefficient. The 

next example illustrates how this initial assumption may not be correct.  

 

Example 5.14: Describe the surface 𝑥2 − 2𝑦2 − 4𝑧2 + 2𝑥 − 24𝑧 + 5 = 0. 

 

Solution: Completing the square twice (on variables x and z), we have: 

 

𝑥2 + 2𝑥 + 1 − 2𝑦2 − 4(𝑧2 − 6𝑧 + 9) = −5 + 1 − 36 

(𝑥 + 1)2 − 2𝑦2 − 4(𝑧 − 3)2 = −40. 
 

Dividing by –40, we have 

 

−
(𝑥 + 1)2

40
+
𝑦2

20
+
(𝑧 − 3)2

10
= 1. 

 

This is a hyperboloid of one sheet, centered at (−1,0,3). Planes parallel to the 

yz-plane will intersect the surface and form ellipses. The axis of symmetry is a 

line parallel to the x-axis, passing through (−1,0,3). 
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Common Graphs in 𝑹𝟑 

 

Equation 

 

Surface Description 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑 Plane. 

 

(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 + (𝑧 − 𝑧0)
2 = 𝑟2 Sphere of radius r and center 

(𝑥0, 𝑦0 , 𝑧0). 
 

𝑧 = √𝑟2 − 𝑥2 − 𝑦2 Hemisphere with a circular 

base on the xy-plane and 

extending into the positive z 

direction. 

𝑧 = 𝑥2 + 𝑦2 Paraboloid with vertex (0,0,0) 

opening in the positive z 

direction. The vertex is a 

minimum. 

𝑧 = 𝑎√𝑥2 + 𝑦2 Cone with vertex at (0,0,0) and 

opening in the positive z-

direction, where a is 

determined by a point on the 

cone’s surface. 

𝑧 = −𝑥2 − 𝑦2 Paraboloid with vertex (0,0,0) 

opening in the negative z 

direction. The vertex is a 

maximum. 

𝑧 = (𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 + 𝑧0 Paraboloid with vertex 

(𝑥0, 𝑦0 , 𝑧0) opening in the 

positive z direction. 

𝑧 = 𝑥2 − 𝑦2  or  𝑧 = −𝑥2 + 𝑦2 A hyperbolic paraboloid. 

 

(𝑥 − 𝑥0)
2

𝑎2
+
(𝑦 − 𝑦0)

2

𝑏2
−
(𝑧 − 𝑧0)

2

𝑐2
= 1 

 

Hyperboloid of one sheet 

 

(𝑥 − 𝑥0)
2

𝑎2
−
(𝑦 − 𝑦0)

2

𝑏2
−
(𝑧 − 𝑧0)

2

𝑐2
= 1 

 

Hyperboloid of two sheets. 

 

𝑦 = 𝑓(𝑥) A “sheet” or “cylinder” in 

which the curve given by 𝑦 =
𝑓(𝑥) extends into the positive 

and negative z directions, and 

contains ordered pairs of the 

form (𝑥, 𝑓(𝑥), 𝑧). 
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Surfaces of the general form 𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑧2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹𝑧 + 𝐺 = 0 are 

called quadric surfaces in 𝑅3, assuming that 𝐴, 𝐵 and 𝐶 are not all 

simultaneously 0 (If they are, then the equation represents a plane). The signs 

and values of 𝐴, 𝐵 and 𝐶 determine the type of surface; 𝐸, 𝐹 and 𝐺 govern shifts 

in the x, y and z directions simultaneously. 

 

Assuming that the equation is consistent (has at least one solution), then some 

of the common quadric surfaces are spheres, ellipsoids, paraboloids, cones, 

hyperbolic paraboloids (“saddles”), hyperboloids of one sheet, and hyperboloids 

of two sheets. 

 

Limits of Functions in 𝑹𝟑 

 

Let 𝑧 = 𝑓(𝑥, 𝑦) be a two-variable function in 𝑅3. If x approaches a and y 

approaches b, then the general limit is written 

 

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = 𝐿. 

 

For this limit to exist, it must be finite and true for all possible paths toward 

(𝑎, 𝑏). If any pair of different paths result in a different limit value, or any one 

path results in an infinite or undefined limit, then the general limit does not exist. 

 

         

 

Example 5.15: Find the following limit: 

 

lim
(𝑥,𝑦)→(1,−2)

(2𝑥2𝑦). 

 

Solution: For two-variable polynomial terms, the limit will exist and is found 

by direct evaluation: 

 

lim
(𝑥,𝑦)→(1,−2)

(2𝑥2𝑦) = 2(1)2(−2) = −4. 
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Example 5.16: Find the following limit: 

 

lim
(𝑥,𝑦)→(3,5)

(
𝑥

𝑦 − 5
). 

 

Solution: By direct evaluation, we have 

 

lim
(𝑥,𝑦)→(3,5)

(
𝑥

𝑦 − 5
) =

(3)

(5) − 5
=
3

0
 . 

 

This is an undefined term. Thus, the limit fails to exist.  

 

         

 

Undefined and Indeterminate: Recall that division by 0 is never allowed. 

However, depending on the numerator, letting a denominator approach 0 as a 

limit results in two different situations. If the numerator k is not zero (as a limit), 

then the expression 
𝑘

0
 is undefined, such as in Example 5.16. If the numerator is 

0 as a limit, then the expression 
0

0
 is indeterminate, which means that further 

investigation is needed to determine the limit, if it exists. This is explored in 

Examples 5.17 and 5.18. 

 

Example 5.17: Find the following limit: 

 

lim
(𝑥,𝑦)→(1,1)

(
𝑥2 − 𝑥𝑦

𝑥 − 𝑦
). 

 

Solution: Evaluation results in the indeterminate form 
0

0
: 

 

lim
(𝑥,𝑦)→(1,1)

(
𝑥2 − 𝑥𝑦

𝑥 − 𝑦
) =

(1)2 − (1)(1)

(1) − (1)
=
0

0
 . 

 

However, we can factor the numerator, then simplify: 

 

𝑥2 − 𝑥𝑦

𝑥 − 𝑦
=
𝑥(𝑥 − 𝑦)

𝑥 − 𝑦
= 𝑥. 

 

Re-evaluating the limit, we have 

 

lim
(𝑥,𝑦)→(1,1)

(
𝑥2 − 𝑥𝑦

𝑥 − 𝑦
) = lim

(𝑥,𝑦)→(1,1)
𝑥 = 1. 

 

Note that the function 𝑧 = 𝑓(𝑥, 𝑦) =
𝑥2−𝑥𝑦

𝑥−𝑦
 is not defined when 𝑦 = 𝑥. 
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Example 5.18: Find the following limit: 

 

lim
(𝑥,𝑦)→(0,0)

(
𝑥2 − 𝑦2

𝑥2 + 𝑦2
). 

 

Solution: Evaluation results in the indeterminate form 
0

0
: 

 

lim
(𝑥,𝑦)→(0,0)

(
𝑥2 − 𝑦2

𝑥2 + 𝑦2
) =

(0)2 − (0)2

(0)2 + (0)2
=
0

0
 . 

 

The expression is not reducible by factoring. Instead, we try different paths in 

the xy-plane that approach the origin, (0,0). If we can show that two different 

paths result in two different limits, then the general limit fails to exist. 

 

For the path along the positive x-axis towards (0,0), we have 𝑦 = 0, so the 

expression 
𝑥2−𝑦2

𝑥2+𝑦2
 simplifies to  

 

𝑥2 − (0)2

𝑥2 + (0)2
=
𝑥2

𝑥2
= 1  (assuming 𝑥 ≠ 0). 

 

Thus, for this particular path, the limit is 

 

lim
𝑥→0

(
𝑥2 − 𝑦2

𝑥2 + 𝑦2
) = lim

𝑥→0
1 = 1. 

 

For the path along the positive y-axis towards (0,0), we have 𝑥 = 0, so the 

expression 
𝑥2−𝑦2

𝑥2+𝑦2
 simplifies to  

 

(0)2 − 𝑦2

(0)2 + 𝑦2
= −

𝑦2

𝑦2
= −1  (assuming 𝑦 ≠ 0). 

 

Thus, the limit for this particular path is 

 

lim
𝑦→0

(
𝑥2 − 𝑦2

𝑥2 + 𝑦2
) = lim

𝑦→0
(−1) = −1. 
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Since two different paths lead to two different limit values, the general limit 

 

lim
(𝑥,𝑦)→(0,0)

(
𝑥2 − 𝑦2

𝑥2 + 𝑦2
) 

 

does not exist. The function 𝑧 = 𝑓(𝑥, 𝑦) =
𝑥2−𝑦2

𝑥2+𝑦2
 is not defined at (0,0), nor does 

its limit exist as x and y approach (0,0). 

 

         

 

Example 5.19: Find the following limit: 

 

lim
(𝑥,𝑦)→(0,0)

(
𝑥𝑦

𝑥2 + 𝑦2
). 

 

Solution: Direct evaluation results in the indeterminate form 
0

0
: 

 

lim
(𝑥,𝑦)→(0,0)

(
𝑥𝑦

𝑥2 + 𝑦2
) =

(0)(0)

(0)2 + (0)2
=
0

0
 . 

 

We try different paths: For a path along the x-axis (y = 0), we have 

 
𝑥(0)

𝑥2 + (0)2
= 0, so that      lim

𝑥→0
(

𝑥(0)

𝑥2 + (0)2
) = lim

𝑥→0
(0) = 0. 

 

For a path along the y-axis (x = 0), we have 

 
(0)𝑦

(0)2 + 𝑦2
= 0, so that     lim

𝑦→0
(

(0)𝑦

(0)2 + 𝑦2
) = lim

𝑥→0
(0) = 0. 

 

It might be tempting to infer that since the limit equals 0 along two paths, the 

general limit would exist and be 0 as well. This is false. Let’s try a different 

path, along the line y = x: 

 

lim
𝑥→0

(
𝑥(𝑥)

𝑥2 + (𝑥)2
) =

𝑥2

2𝑥2
=
1

2
 . 

 

We have shown two different paths result in different limit values. Thus, the 

general limit does not exist. 
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