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15. Vector Valued Functions 
 
Up to this point, we have presented vectors with constant components, for 

example, 〈1,2〉 and 〈2, −5,4〉. We now allow the components of a vector to be 

functions of a common variable. For example, 𝐫(𝑡) = 〈2𝑡 + 1, 𝑡2 + 3〉 presents 

a function whose input is a scalar 𝑡, and whose output is a vector in 𝑅2. Such a 

function is called a vector-valued function and 𝑡 is called a parameter 

variable. The common notation is to write 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡)〉 for vector-

valued functions in 𝑅2, and 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉 for vector-valued 

functions in 𝑅3. The number of parameter variables can be greater than one. 

 

         

 

Example 15.1: Sketch 𝐫(𝑡) = 〈2𝑡 + 1, 𝑡2 + 3〉 for −1 ≤ 𝑡 ≤ 2. 

 

Solution: Let’s build an input-output table: 

 

𝑡 𝐫(𝑡) = 〈2𝑡 + 1, 𝑡2 + 3〉 

−1 𝐫(−1) = 〈2(−1) + 1, (−1)2 + 3〉 = 〈−1,4〉 

−0.5 𝐫(−0.5) = 〈2(−0.5) + 1, (−0.5)2 + 3〉 = 〈0, 3.25〉 

0 𝐫(0) = 〈2(0) + 1, (0)2 + 3〉 = 〈1,3〉 

0.5 𝐫(0.5) = 〈2(0.5) + 1, (0.5)2 + 3〉 = 〈2, 3.25〉 

1 𝐫(1) = 〈2(1) + 1, (1)2 + 3〉 = 〈3,4〉 

1.5 𝐫(1.5) = 〈2(1.5) + 1, (1.5)2 + 3〉 = 〈4, 5.25〉 

2 𝐫(2) = 〈2(2) + 1, (2)2 + 3〉 = 〈5,7〉 

 

We then sketch vectors for each 𝑡 such that its foot is at the origin: 

 

 
 

This looks like a mess, but it is a truthful and literal representation of 𝐫(𝑡) =
〈2𝑡 + 1, 𝑡2 + 3〉 for certain values of 𝑡 in the interval −1 ≤ 𝑡 ≤ 2. However, 
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when representing the graph of a vector valued function, it is common to only 

show the position at the head of the vector, and the curve that results.  

 

 
 

This image is much cleaner, and we see that the path traced out by the heads of 

the vectors given by 𝐫(𝑡) = 〈2𝑡 + 1, 𝑡2 + 3〉 for −1 ≤ 𝑡 ≤ 2 forms a parabola. 

Note that some of the 𝑡 values are stated at certain points. It is common to place 

an arrow on this path to show the direction of increasing value of the variable 𝑡. 

 

         

 

Example 15.2: Sketch 𝐫(𝑡) = 〈𝑎 cos 𝑡 , 𝑎 sin 𝑡〉, for 0 ≤ 𝑡 ≤ 2𝜋, and describe 

the curve that is traced out by the vectors. 

 

Solution: We build an input-output table: 

 

𝑡 𝐫(𝑡) = 〈𝑎 cos 𝑡 , 𝑎 sin 𝑡〉 

0 𝐫(0) = 〈𝑎 cos 0 , 𝑎 sin 0〉 = 〈𝑎, 0〉 

𝜋 4⁄  𝐫(𝜋 4⁄ ) = 〈𝑎 cos(𝜋 4⁄ ) , 𝑎 sin(𝜋 4⁄ )〉 = 〈𝑎 √2 2⁄ , 𝑎 √2 2⁄ 〉 

𝜋 2⁄  𝐫(𝜋 2⁄ ) = 〈𝑎 cos(𝜋 2⁄ ) , 𝑎 sin(𝜋 2⁄ )〉 = 〈0, 𝑎〉 

3𝜋 4⁄  𝐫(3 𝜋 4⁄ ) = 〈𝑎 cos(3 𝜋 4⁄ ) , 𝑎 sin(3𝜋 4⁄ )〉

= 〈−𝑎 √2 2⁄ , 𝑎 √2 2⁄ 〉 

𝜋 𝐫(𝜋) = 〈𝑎 cos(𝜋) , 𝑎 sin(𝜋)〉 = 〈−𝑎, 0〉 

5𝜋 4⁄  𝐫(5𝜋 4⁄ ) = 〈𝑎 cos(5𝜋 4⁄ ) , 𝑎 sin(5𝜋 4⁄ )〉

= 〈−𝑎 √2 2⁄ , −𝑎 √2 2⁄ 〉 

3𝜋 2⁄  𝐫(3𝜋 2⁄ ) = 〈𝑎 cos(3𝜋 2⁄ ) , 𝑎 sin(3𝜋 2⁄ )〉 = 〈0, −𝑎〉 

7𝜋 4⁄  𝐫(7𝜋 4⁄ ) = 〈𝑎 cos(7𝜋 4⁄ ) , 𝑎 sin(7 𝜋 4⁄ )〉

= 〈𝑎 √2 2⁄ , −𝑎 √2 2⁄ 〉 

2𝜋 𝐫(2𝜋) = 〈𝑎 cos(2𝜋) , 𝑎 sin(2𝜋)〉 = 〈𝑎, 0〉 
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The curve is below. The vectors are not actually drawn. Instead, the curve 

formed by the placement of each vector’s head is drawn. 

 

The curve is a circle of radius a, 

centered at the origin. The bounds 

0 ≤ 𝑡 ≤ 2𝜋 ensure that exactly 

one revolution of the circle is 

sketched.  

 

Note that certain points on the 

path are given by ordered pairs. 

Remember that these are the 

heads of the vectors, which are 

not drawn. Thus, the point (0, 𝑎) 

represents the head of the vector 
〈0, 𝑎〉 when 𝑡 = 𝜋 2⁄ . The arrow 

shows the direction of increasing 

𝑡, and the circle “starts” at the point (𝑎, 0) and ends at this same point, one 

revolution later. 

 

There is more than one way to define a circle of radius a. For example, 𝐫(𝑡) =
〈𝑎 sin 𝑡 , 𝑎 cos 𝑡〉, for 0 ≤ 𝑡 ≤ 2𝜋 traces the same circle, but this time starting at 

(0, 𝑎) and in the clockwise direction. 

 

         

 

Example 15.3: Rewrite the function 𝑦 = 𝑓(𝑥) = 𝑥3 from (0,0) to (3,27) as a 

vector-valued function. 

 

Solution: Any function of the form 𝑦 = 𝑓(𝑥) can be rewritten as a vector-

valued function by letting 𝑥(𝑡) = 𝑡 and 𝑦(𝑡) = 𝑓(𝑡). Thus, the function 𝑦 =
𝑓(𝑥) = 𝑥3 from (0,0) to (3,27) can be re-written as 

 

𝐫(𝑡) = 〈𝑡, 𝑡3〉   for   0 ≤ 𝑡 ≤ 3. 
 

Note that 𝐫(0) = 〈0,0〉 and that 𝐫(3) = 〈3,27〉. These are vectors whose heads 

lie at the points (0,0) and (3,27) respectively. 
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Example 15.4: Find the domain of 𝐫(𝑡) = ⟨𝑡, 2𝑡,
1

3−𝑡
⟩. 

 

Solution: The domain is the largest subset of the real numbers for which all 

three component functions are defined simultaneously. Note that 𝑥(𝑡) = 𝑡 and 

𝑦(𝑡) = 2𝑡 are defined for all real numbers 𝑡, but that 𝑧(𝑡) =
1

3−𝑡
 is not defined 

when 𝑡 = 3. Thus, the domain of 𝐫 is given by {𝑡|(−∞, 3) ∪ (3, ∞)}. 

 

         

 

Example 15.5: Find the domain of 𝐫(𝑡) = ⟨
2

𝑡
, √4 − 3𝑡, 𝑒𝑡⟩. 

 

Solution: The first component 𝑥(𝑡) =
2

𝑡
 requires that 𝑡 ≠ 0, and the second 

component 𝑦(𝑡) = √4 − 3𝑡 requires that 4 − 3𝑡 ≥ 0, or 𝑡 ≤
4

3
. There are no 

restrictions on 𝑡 implied by 𝑧(𝑡) = 𝑒𝑡. Thus, the domain of 𝐫 is given by 

{𝑡|(−∞, 0) ∪ (0,
4

3
]}. 

 

         

 

Example 15.6: Find a vector valued function that describes the line segment in 

𝑅3 from (1, −2,5) to (3,1, −4). 

 

Solution: Find the direction vector: 

 

𝐯 = 〈3 − 1,1 − (−2), −4 − 5〉 = 〈2,3, −9〉. 
 

Using (1, −2,5) as the initial point, we have 〈1, −2,5〉 + 𝑡〈2,3, −9〉 as the line 

segment using vector notation. As a vector-valued function, we have 

 

𝐫(𝑡) = 〈1 + 2𝑡, −2 + 3𝑡, 5 − 9𝑡〉   for   0 ≤ 𝑡 ≤ 1. 
 

Note that 𝐫(0) = 〈1, −2,5〉, a vector whose head lies at the point (1, −2,5), and 

that 𝐫(1) = 〈3,1, −4〉, a vector whose head lies at the point (3,1, −4). 
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Example 15.7: Describe 𝐫(𝑡) = 〈2 cos 𝑡 , 2 sin 𝑡 , 𝑡〉 for 𝑡 ≥ 0. 

 

Solution: This is a curve in 𝑅3. Look at two of the components at a time: 

 

The components 𝑥(𝑡) = 2 cos 𝑡 and 𝑦(𝑡) = 2 sin 𝑡 trace a circle of radius 

2 repeatedly since t increases without bound.  

 

The components 𝑥(𝑡) = 2 cos 𝑡 and 𝑧(𝑡) = 𝑡 trace a cosine wave 

“upward”, e.g. assuming that x is the horizontal axis and z the vertical axis. 

 

The components 𝑦(𝑡) = 2 sin 𝑡 and 𝑧(𝑡) = 𝑡 trace a sine wave “upward”. 

 

The curve is a helix, which looks like a coiled spring. This helix has a radius of 

2 centered around the positive z-axis, “wrapping” around the z-axis (but never 

touching it) as t increases in value. 

 

         

 

Example 15.8: In 𝑅3, the circular cylinder 𝑥2 + 𝑦2 = 25 is intersected by the 

plane 𝑦 + 𝑧 = 4. Find a vector-valued function 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉 that 

describes the curve formed by the intersection of these two surfaces. 

 

Solution: There are many possible vector-valued functions that describe this 

curve. One possible way is to note that we can write 𝑥(𝑡) = 5 cos 𝑡 and 𝑦(𝑡) =
5 sin 𝑡 for 0 ≤ 𝑡 ≤ 2𝜋. Then, since 𝑦 + 𝑧 = 4, we have 𝑧 = 4 − 𝑦, so that 

𝑧(𝑡) = 4 − 5 sin 𝑡. The curve of intersection is given by 

 

𝐫(𝑡) = 〈5 cos 𝑡 , 5 sin 𝑡 , 4 − 5 sin 𝑡〉,    for   0 ≤ 𝑡 ≤ 2𝜋. 
 

         

 

The number of parameter variables of a vector-valued function describe the 

“type” of graph that will result. For example, a vector-valued function of one 

parameter variable will result in a curve, as demonstrated in the previous 

examples. A vector-valued function of two variables results in a surface, as the 

next two examples show. 

 

Example 15.9: A circular cylinder of radius 2 is centered at the origin such that 

the x-axis is the axis of symmetry of the cylinder. Describe this surface 

parametrically, using 𝑢 and 𝑣 as the parameter variables. 

 

Solution: Since the x-axis is the axis of symmetry, we infer that the circular 

cross sections lie on planes parallel to the yz-plane. For example, a circle of 

radius 2 on the yz-plane (x = 0) is described by 𝑦2 + 𝑧2 = 4. Using parameter 

variable 𝑢, we can describe the circle by letting 𝑦 = 2 cos 𝑢 and 𝑧 = 2 sin 𝑢, 

where the 2 represents the circle’s radius. Note that the circular cross-sections 

depend only on variable 𝑢. Thus, we can let 𝑥 = 𝑣, representing the extension 
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of the circle into the positive and negative x direction, with no restrictions on 𝑣. 

The cylinder is described parametrically as 

 

𝐫(𝑢, 𝑣) = 〈𝑣, 2 cos 𝑢 , 2 sin 𝑢〉, 0 ≤ 𝑢 ≤ 2𝜋,   − ∞ < 𝑣 < ∞. 
 

         

 

Example 15.10: Describe the cone 𝑧 = √𝑥2 + 𝑦2 parametrically using 

variables 𝑢 and 𝑣. 

 

Solution: Observe that cross sections of this surface with a plane 𝑧 = 𝑘 results 

in a circle of radius 𝑘. Thus, if we let 𝑧 = 𝑢, we can then define 𝑥 = 𝑢 cos 𝑣 and 

𝑦 = 𝑢 sin 𝑣, which result in circles of radius 𝑢. Thus, we have 𝐫(𝑢, 𝑣) =
〈𝑢 cos 𝑣 , 𝑢 sin 𝑣 , 𝑢〉, where 0 ≤ 𝑣 ≤ 2𝜋 and 𝑢 ≥ 0. 

 

         

 

16. Vector Valued Functions: Limits & 

Continuity 
 
The same notions of limits and continuity hold true for vector-valued functions. 

For example, the limit of 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉 as 𝑡 → 𝑎 is given by 

 

lim
𝑡→𝑎

𝐫(𝑡) = 〈lim
𝑡→𝑎

 𝑥(𝑡), lim
𝑡→𝑎

 𝑦(𝑡), lim
𝑡→𝑎

 𝑧(𝑡)〉, 

 

assuming that all three limits exist. 

 

Similarly, a vector-valued function 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉 is continuous at 

𝑡 = 𝑎 if  

 

• The limit as 𝑡 → 𝑎 exists, 

• The vector 𝐫(𝑎) exists (that is, a is in the domain of r), and 

• lim
𝑡→𝑎

𝐫(𝑡) = 𝐫(𝑎). 

 

         

 

Example 16.1: Let  𝐫(𝑡) = ⟨𝑡2, 𝑒𝑡 ,
1

𝑡+3
⟩, find lim

𝑡→2
𝐫(𝑡). Is r continuous at 𝑡 = 2? 

 

Solution: The limit is lim
𝑡→2

𝐫(𝑡) = ⟨lim
𝑡→2

 𝑡2, lim
𝑡→2

 𝑒𝑡 , lim
𝑡→2

(
1

𝑡+3
)⟩ = ⟨4, 𝑒2,

1

5
⟩. 
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Note that 𝐫(2) = ⟨4, 𝑒2,
1

5
⟩. Since all three conditions of continuity are met, the 

curve traced out by 𝐫(𝑡) = ⟨𝑡2, 𝑒𝑡 ,
1

𝑡+3
⟩ is continuous at 𝑡 = 2. 

 

In this example, the limit of r as 𝑡 → −3 does not exist since the limit fails to 

exist for the expression 
1

𝑡+3
. This curve is not continuous when 𝑡 = −3. It is 

continuous everywhere else. 

 

         

 

Example 16.2: Given  𝐫(𝑡) = ⟨2𝑡 + 1,
𝑡2−9

𝑡−3
, 𝑡2⟩, find lim

𝑡→3
𝐫(𝑡). Is r continuous 

at 𝑡 = 3? 

 

Solution: Note that the domain of r excludes the value 𝑡 = 3. However, the 

limit does exist as 𝑡 → 3, since lim
𝑡→3

𝐫(𝑡) = ⟨lim
𝑡→3

 (2𝑡 + 1), lim
𝑡→3

 (
𝑡2−9

𝑡−3
) , lim

𝑡→3
 𝑡2⟩ =

〈7,6,9〉. 
 

The middle expression simplifies as 
𝑡2−9

𝑡−3
=

(𝑡+3)(𝑡−3)

𝑡−3
= 𝑡 + 3, then the limit is 

taken. However, the value 𝑡 = 3 is still excluded from the domain, so r is not 

continuous at 𝑡 = 3. There is a deleted point in the curve when 𝑡 = 3.  

 

         

 

17. Vector Valued Functions: Differentiation 
 
Given a vector-valued function 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉, the derivative of r 

with respect to 𝑡 is given by 

 

𝐫′(𝑡) =
𝑑

𝑑𝑡
𝐫(𝑡) 

=
𝑑

𝑑𝑡
〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉 

= ⟨
𝑑

𝑑𝑡
𝑥(𝑡),

𝑑

𝑑𝑡
𝑦(𝑡),

𝑑

𝑑𝑡
𝑧(𝑡)⟩ 

= ⟨𝑥′(𝑡), 𝑦′(𝑡), 𝑧′(𝑡)⟩, 

 

assuming that the derivatives exist. Note that 𝐫′(𝑡) = 〈𝑥′(𝑡), 𝑦′(𝑡), 𝑧′(𝑡)〉 is 

itself a vector-valued function. Visually, the vectors given by 𝐫′(𝑡) can be 

shifted in such a way so that they are tangent to the curve traced out by 𝐫(𝑡) =
〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉. 
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In a physical setting, if 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉 represents the displacement of 

an object, then 𝐯(𝑡) = 𝐫′(𝑡) = 〈𝑥′(𝑡), 𝑦′(𝑡), 𝑧′(𝑡)〉 represents the object’s 

velocity and the magnitude, |𝐫′(𝑡)|, is the object’s speed. Acceleration is 𝐚(𝑡) =
𝐯′(𝑡) = 𝐫′′(𝑡) = 〈𝑥′′(𝑡), 𝑦′′(𝑡), 𝑧′′(𝑡)〉. 
 

         

 

Example 17.1: An object moves through 𝑅3 along a path defined by 𝐫(𝑡) =
〈𝑡3, 2𝑡2 + 𝑡, 5𝑡〉 where all dimensions are in meters. Find the object’s velocity 

and its speed when 𝑡 = 4 seconds. 

 

Solution: The derivative of 𝐫(𝑡) = 〈𝑡3, 2𝑡2 + 𝑡, 5𝑡〉 is 𝐫′(𝑡) = 〈3𝑡2, 4𝑡 + 1,5〉. 
Thus, when 𝑡 = 4 seconds, the object has a velocity of 𝐫′(4) = 〈3(4)2, 4(4) +
1, 5〉 = 〈48,17,5〉. The object’s speed at 𝑡 = 4 seconds is |𝐫′(4)| =

√482 + 172 + 52 ≈ 51.2 meters per second. 

 

         

 

Example 17.2: An object moves through 𝑅2 along a path defined by 𝐫(𝑡) =
〈𝑡, −4.9𝑡2 + 24𝑡〉, where the first component is the horizontal displacement in 

meters, and the second component is vertical displacement in meters, and where 

𝑡 is in seconds. Find the maximum height that this object achieves. 

 

Solution: Note that the object traces a downward-opening parabolic arc in 𝑅2. 

The object will achieve its maximum height when the vertical component of 

velocity of the object is temporarily 0. Thus, we differentiate: 𝐯(𝑡) = 𝐫′(𝑡) =
〈1, −9.8𝑡 + 24〉. 
 

We then set the vertical component of velocity to 0, and solve: 

 

−9.8𝑡 + 24 = 0     gives     𝑡 =
24

9.8
≈ 2.449 seconds. 

 

This is the time at which the object achieves its maximum height. When we 

substitute 𝑡 = 2.449 into r, we have 

 

𝐫(2.449) = 〈2.449, −4.9(2.449)2 + 24(2.449)〉 = 〈2.449, 29.388〉. 
 

The object achieves a maximum height of about 29.388 meters above the ground 

after 2.449 seconds in flight. The object has moved 2.449 meters horizontally in 

this same period of time. 
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Example 17.3: An object moves through 𝑅2 along a path defined by 𝐫(𝑡) =
〈𝑡3, 𝑡2 + 2𝑡〉, where the components are in meters and 𝑡 is in seconds. What is 

the minimum speed of the object? 

 

Solution: The derivative is 𝐫′(𝑡) = 〈3𝑡2, 2𝑡 + 2〉, so that the speed can be now 

stated as a function in variable 𝑡:   

 

𝑠(𝑡) = |𝐫′(𝑡)| = √(3𝑡2)2 + (2𝑡 + 2)2 = √9𝑡4 + 4𝑡2 + 8𝑡 + 4.  

 

We now minimize 𝑠(𝑡): 

 

𝑑

𝑑𝑡
𝑠(𝑡) =

𝑑

𝑑𝑡
√9𝑡4 + 4𝑡2 + 8𝑡 + 4 =

36𝑡3 + 8𝑡 + 8

2√9𝑡4 + 4𝑡2 + 8𝑡 + 4
 . 

 

This expression is 0 when the numerator is 0. Using a calculator, we find that 

36𝑡3 + 8𝑡 + 8 = 0 when 𝑡 = −0.485 seconds. This can be verified to be a 

minimum by using either the first or second derivative test. Thus, the object’s 

minimum speed occurs when 𝑡 = −0.485 seconds and is  

 

𝑠(−0.485) = √9(−0.485)4 + 4(−0.485)2 + 8(−0.485) + 4 ≈ 1.249 

meters per second. 

 

         

 

Example 17.4: An object moves through 𝑅2 along a path defined by 𝐫(𝑡) =
〈2𝑡2 + 1, 𝑡4〉. Find the equation of the tangent line in vector form when 𝑡 = 5. 

 

Solution. The derivative is 𝐫′(𝑡) = 〈4𝑡, 4𝑡3〉. Thus, when 𝑡 = 5, the object is 

moving (instantaneously) in the direction of 𝐫′(5) = 〈4(5), 4(5)3〉 =
〈20, 500〉. This is the object’s direction vector. Furthermore, at 𝑡 = 5, the 

object’s location is 𝐫(5) = 〈2(5)2 + 1, (5)4〉 = 〈51, 625〉. Thus, the object’s 

tangent line in vector form when 𝑡 = 5 is 〈51, 625〉 + 𝑡〈20, 500〉, or 

equivalently, 〈51 + 20𝑡, 625 + 500𝑡〉. 

 

         

 

Example 17.5: An object moves through 𝑅3 along a path defined by 𝐫(𝑡) =
〈𝑡 + 3, 𝑡2 + 𝑡, 5𝑡〉. Find the equation of the tangent line to this path when the 

object is at (7,20,20). 

 

Solution. As in the previous example, we need both a direction vector and a 

position vector. The location (7,20,20) corresponds to a position vector 

〈7,20,20〉, and setting this equal to 𝐫(𝑡) = 〈𝑡 + 3, 𝑡2 + 𝑡, 5𝑡〉, we can deduce 

that 𝑡 = 4. The derivative is 𝐫′(𝑡) = 〈1, 2𝑡 + 1, 5〉, so the direction vector is 

𝐫′(4) = 〈1, 2(4) + 1, 5〉 = 〈1,9,5〉. 
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Thus, the object’s tangent line in vector form at this instant is 〈7, 20, 20〉 +
𝑡〈1, 9, 5〉, or equivalently, 〈7 + 𝑡, 20 + 9𝑡, 20 + 5𝑡〉. 
Example 17.6: An object revolves around the origin in a circular orbit. The 

circle is of radius 5 meters and the object completes a revolution every 10 

seconds. Assume the object moves counter-clockwise and that is started on the 

positive x-axis. Find this object’s position (displacement), velocity, speed and 

acceleration at time 𝑡. 

 

Solution: Let’s assume that 0 ≤ 𝑡 ≤ 10 seconds represents one revolution of 

the object. Then, the object’s displacement is given by 𝐫(𝑡) =

⟨5 cos (
2𝜋𝑡

10
) , 5 sin (

2𝜋𝑡

10
)⟩ = ⟨5 cos (

𝜋𝑡

5
) , 5 sin (

𝜋𝑡

5
)⟩. The leading coefficient 5 

represents the radius, and note that when 𝑡 = 10, the arguments within the sine 

and cosine operators are both 
𝜋

5
(10) = 2𝜋, the usual period of the sine and 

cosine functions. 

 

The velocity is 𝐯(𝑡) = 𝐫′(𝑡) = ⟨−5 sin (
𝜋𝑡

5
) (

𝜋

5
) , 5 cos (

𝜋𝑡

5
) (

𝜋

5
)⟩ =

⟨−𝜋 sin (
𝜋𝑡

5
) , 𝜋 cos (

𝜋𝑡

5
)⟩, where the chain rule was used followed by 

simplification. Note that 𝐫(𝑡) ⋅ 𝐯(𝑡) = 0. This is always true for objects moving 

in a circular path: the (tangential) velocity vector is orthogonal to the 

displacement vector. 

 

The object’s speed is |𝐯(𝑡)| = |𝐫′(𝑡)| = √(−𝜋 sin (
𝜋𝑡

5
))

2

+ (𝜋 cos (
𝜋𝑡

5
))

2

=

𝜋 meters per second. This makes sense: the circumference of the object’s path 

is 2𝜋(5) = 10𝜋 meters. If it takes the object 10 seconds to complete one 

revolution at 𝜋 meters per second, then it will have travelled a distance of 10𝜋 

meters in that revolution. 

 

The acceleration is 𝐚(𝑡) = 𝐯′(𝑡) = 𝐫′′(𝑡) = ⟨−
𝜋2

5
cos (

𝜋𝑡

5
) , −

𝜋2

5
sin (

𝜋𝑡

5
)⟩. 

Note that the acceleration vector is always opposite the displacement vector for 

an object in circular motion. 
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18. Vector Valued Functions: Integration 
 
Given a vector-valued function 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉, the indefinite integral 

of r with respect to 𝑡 is given by 

 

∫ 𝐫(𝑡) 𝑑𝑡 = ⟨∫ 𝑥(𝑡) 𝑑𝑡 , ∫ 𝑦(𝑡) 𝑑𝑡 , ∫ 𝑧(𝑡) 𝑑𝑡⟩ + 〈𝑎, 𝑏, 𝑐〉, 

 

where 〈𝑎, 𝑏, 𝑐〉 is a vector composed of the constants of integration of the 

components of r. 

 

         

 

Example 18.1: Find ∫ 𝐫(𝑡) 𝑑𝑡, where 𝐫(𝑡) = 〈3𝑡2,
1

𝑡
, sin(3𝑡)〉, where 𝑡 > 0. 

 

Solution: We have  

 

∫ 𝐫(𝑡) 𝑑𝑡 = ⟨∫ 3𝑡2 𝑑𝑡 , ∫ (
1

𝑡
) 𝑑𝑡 , ∫ sin(3𝑡) 𝑑𝑡⟩

= ⟨𝑡3, ln 𝑡 , −
1

3
cos(3𝑡)⟩ + 〈𝑎, 𝑏, 𝑐〉. 

 

         

 

Example 18.2: Find 𝐫(𝑡) = ∫ 𝐫′(𝑡) 𝑑𝑡, where 𝐫′(𝑡) = 〈𝑒2𝑡, √𝑡, sin 𝑡〉, and 

𝐫(0) = 〈0,0,0〉.  
 

Solution: Note that 𝐫(𝑡) = ∫ 𝐫′(𝑡) 𝑑𝑡 + 𝐤, where k = 〈𝑎, 𝑏, 𝑐〉 is a constant 

vector. We have 

 

𝐫(𝑡) = ∫ 𝐫′(𝑡) 𝑑𝑡 

= ⟨∫ 𝑒2𝑡  𝑑𝑡 , ∫ √𝑡 𝑑𝑡 , ∫ sin(𝑡) 𝑑𝑡⟩ + 𝐤 

= ⟨
1

2
𝑒2𝑡 ,

2

3
𝑡3 2⁄ , − cos 𝑡⟩ + 〈𝑎, 𝑏, 𝑐〉. 

 

Since 𝐫(0) = 〈0,0,0〉, we have 

 

〈0,0,0〉 = ⟨ 
1

2
𝑒2(0),

2

3
(0)3 2⁄ , − cos(0)⟩ + 〈𝑎, 𝑏, 𝑐〉 

〈0,0,0〉 = ⟨ 
1

2
, 0, −1⟩ + 〈𝑎, 𝑏, 𝑐〉. 
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This forces 𝑎 = −
1

2
, 𝑏 = 0 and 𝑐 = 1. Thus, 𝐫(𝑡) = ⟨

1

2
𝑒2𝑡 ,

2

3
𝑡3 2⁄ , − cos 𝑡⟩ +

〈−
1

2
, 0,1〉, or simplified as 𝐫(𝑡) = ⟨

1

2
(𝑒2𝑡 − 1),

2

3
𝑡3 2⁄ , 1 − cos 𝑡⟩.  Don’t 

confuse 𝐫(0) = 〈0,0,0〉 as being the constant vector 〈𝑎, 𝑏, 𝑐〉. 
 

         

 

Example 18.3: An object’s acceleration is given by 𝐚(𝑡) = 〈0, 𝑡〉, where 𝑡 is in 

seconds and the components are meters per seconds-squared. Find 𝐯(𝑡) and 𝐫(𝑡) 

such that 𝐯(1) = 〈2,5〉 and 𝐫(1) = 〈−1,3〉. 
 

Solution: Integrating acceleration, we obtain velocity: 

 

𝐯(𝑡) = ∫ 𝐚(𝑡) 𝑑𝑡 = ∫〈0, 𝑡〉 𝑑𝑡 = ⟨𝑘1,
1

2
𝑡2 + 𝑘2⟩. 

 

To find 𝐤 = 〈𝑘1, 𝑘2〉, note that 𝐯(1) = 〈2,5〉: 
 

〈2,5〉 = ⟨𝑘1,
1

2
(1)2 + 𝑘2⟩. 

 

This forces 𝑘1 = 2 and 𝑘2 =
9

2
, so that 𝐯(𝑡) = ⟨2,

1

2
𝑡2 +

9

2
⟩. Next, we have 

 

𝐫(𝑡) = ∫ 𝐯(𝑡) 𝑑𝑡 = ∫ ⟨2,
1

2
𝑡2 +

9

2
⟩ 𝑑𝑡 = ⟨2𝑡 + 𝑚1,

1

6
𝑡3 +

9

2
𝑡 + 𝑚2⟩. 

 

To find 𝐦 = 〈𝑚1, 𝑚2〉, we note that 𝐫(1) = 〈−1,3〉: 
 

〈−1,3〉 = ⟨2(1) + 𝑚1,
1

6
(1)3 +

9

2
(1) + 𝑚2⟩. 

 

This forces 𝑚1 = −3 and 𝑚2 = −
5

3
. Therefore, 𝐫(𝑡) = ⟨2𝑡 − 3,

1

6
𝑡3 +

9

2
𝑡 −

5

3
⟩. 
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Example 18.4: Find ∫ 𝐫(𝑡) 𝑑𝑡
2

0
, where 𝐫(𝑡) = ⟨𝑡2, 𝑒2𝑡,

𝑡

𝑡2+1
⟩. 

 

Solution: Integrate. Note that u-du substitution is used for the latter two 

components.  

 

∫ 𝐫(𝑡) 𝑑𝑡
2

0

= ⟨∫ 𝑡2 𝑑𝑡
2

0

, ∫  𝑒2𝑡  𝑑𝑡
2

0

, ∫ (
𝑡

𝑡2 + 1
)  𝑑𝑡

2

0

⟩ 

= ⟨ [
1

3
𝑡3]

0

2

, [
1

2
𝑒2𝑡]

0

2

, [
1

2
ln(𝑡2 + 1)]

0

2

⟩ 

= ⟨
8

3
,
𝑒4 − 1

2
,
1

2
ln 5⟩. 

 

         

 

19. Arc Length 
 
Suppose the vector-valued function 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉 is defined over the 

closed interval 𝑎 ≤ 𝑡 ≤ 𝑏 and differentiable over the open interval 𝑎 < 𝑡 < 𝑏. 

Visually, this means that r is a smooth curve, with no discontinuities or corners. 

 

The arc length 𝑠 of the curve r over the interval 𝑎 ≤ 𝑡 ≤ 𝑏 is given by the 

definite integral 

 

𝑠 = ∫ √(𝑥′(𝑡))
2

+ (𝑦′(𝑡))
2

+ (𝑧′(𝑡))
2

 𝑑𝑡
𝑏

𝑎

. 

 

Note that the integrand √(𝑥′(𝑡))
2

+ (𝑦′(𝑡))
2

+ (𝑧′(𝑡))
2
 is the same as |𝐫′(𝑡)|. 

Thus, we can write the integral as 

 

𝑠 = ∫ |𝐫′(𝑡)| 𝑑𝑡
𝑏

𝑎

. 

 

         

 

Example 19.1: Find the length of the curve traced by 𝐫(𝑡) = 〈2 cos 𝑡 , 2 sin 𝑡〉 
for 0 ≤ 𝑡 ≤ 𝜋. 

 

Solution: Find the derivative: 𝐫′(𝑡) = 〈−2 sin 𝑡 , 2 cos 𝑡〉. Then, using the arc 

length formula, we have 
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𝑠 = ∫ √(−2 sin 𝑡)2 + (2 cos 𝑡)2 𝑑𝑡
𝜋

0

 

= ∫ √4 sin2 𝑡 + 4 cos2 𝑡  𝑑𝑡
𝜋

0

 

= ∫ √4(sin2 𝑡 + cos2 𝑡) 𝑑𝑡
𝜋

0

 

= 2 ∫ 𝑑𝑡
𝜋

0

= 2𝜋. 

 

The arc length is 2𝜋 units. This can be verified using geometry: r traces a 

semicircle of radius 2. The circumference of a circle of radius 2 is 2𝜋(2) = 4𝜋, 

and half of this figure is 2𝜋. 

 

         

 

Example 19.2: Find the arc length of the curve traced by 𝐫(𝑡) = 〈4𝑡, 2𝑡2, 2 ln 𝑡〉 
between the points (8,8,2 ln 2) and (20,50,2 ln 5). 

 

Solution: The derivative is 𝐫′(𝑡) = 〈4,4𝑡,
2

𝑡
〉. Furthermore, the bounds of 𝑡 can 

be inferred from the points. The point (8,8,2 ln 2) suggests that 𝑡 = 2 and the 

point (20,50,2 ln 5) suggests that 𝑡 = 5. We have 

 

𝑠 = ∫ √42 + (4𝑡)2 + (2 𝑡⁄ )2 𝑑𝑡
5

2

 

= ∫ √16 + 16𝑡2 +
4

𝑡2

5

2

 𝑑𝑡 

= ∫ √
16𝑡2 + 16𝑡4 + 4

𝑡2
 𝑑𝑡

5

2

 

= ∫ √
(4𝑡2 + 2)2

𝑡2
 𝑑𝑡

5

2

 

= ∫ (
4𝑡2 + 2

𝑡
)  𝑑𝑡

5

2

 

= ∫ (4𝑡 +
2

𝑡
)  𝑑𝑡

5

2

 

= [2𝑡2 + 2 ln 𝑡]2
5 

= (50 + 2 ln 5) − (8 + 2 ln 2) 

= 42 + 2 ln (
5

2
) ≈ 43.832 units. 
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Example 19.3: Find the arc length of the curve traced by 𝐫(𝑡) = 〈𝑡2, 3𝑡, 4𝑡3〉 
for 1 ≤ 𝑡 ≤ 3. 

 

Solution. The derivative is 𝐫′(𝑡) = 〈2𝑡, 3,12𝑡2〉. Thus, the arc length is given 

by 

 

𝑠 = ∫ √(2𝑡)2 + 32 + (12𝑡2)2 𝑑𝑡
3

1

= ∫ √144𝑡4 + 4𝑡2 + 9 𝑑𝑡
3

1

. 

 

Using a calculator or any numerical method of integrating, we find that the arc 

length is 

 

∫ √144𝑡4 + 4𝑡2 + 9 𝑑𝑡
3

1

≈ 104.58 units. 

 

         

 

Example 19.4: Find the length of the helix traced by 𝐫(𝑡) = 〈2 cos 𝑡 , 2 sin 𝑡 , 𝑡〉 
for 0 ≤ 𝑡 ≤ 2𝜋. 

 

Solution: The derivative is 𝐫′(𝑡) = 〈−2 sin 𝑡 , 2 cos 𝑡 , 1〉. We have 

 

𝑠 = ∫ √(−2 sin 𝑡)2 + (2 cos 𝑡)2 + 12 𝑑𝑡
2𝜋

0

 

= ∫ √4 sin2 𝑡 + 4 cos2 𝑡 + 1 𝑑𝑡
2𝜋

0

 

= ∫ √4(sin2 𝑡 + cos2 𝑡) + 1 𝑑𝑡
2𝜋

0

 

= ∫ √5 𝑑𝑡
2𝜋

0

 

= 2𝜋√5 units. 

 

         

 

Arc Length as a Function 

 

Consider the arc length formula, 𝑠 = ∫ |𝐫′(𝑡)| 𝑑𝑡
𝑏

𝑎
, and allow the upper bound 

to be a variable rather than a fixed value. If we allow the upper bound to be 𝑡, 

and use a dummy variable within the integral, we have arc length 𝑠 as a function 

of 𝑡: 

 

𝑠(𝑡) = ∫ |𝐫′(𝑢)| 𝑑𝑢
𝑡

𝑎

. 
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Differentiating both sides with respect to 𝑡, we have 

 

𝑑

𝑑𝑡
𝑠(𝑡) =

𝑑

𝑑𝑡
∫ |𝐫′(𝑢)| 𝑑𝑢

𝑡

𝑎

. 

 

Using the Fundamental Theorem of Calculus, we have  

 

𝑑

𝑑𝑡
∫ |𝐫′(𝑢)| 𝑑𝑢

𝑡

𝑎

= |𝐫′(𝑡)|. 

 

Thus, we have  

 
𝑑𝑠

𝑑𝑡
= |𝐫′(𝑡)|,          or equivalently,          𝑑𝑠 = |𝐫′(𝑡)| 𝑑𝑡. 

 

 

    This formula is extremely useful later on! Do not forget it!     
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20. Unit Tangent and Unit Normal Vectors 
 
Consider an object that moves along a differentiable (smooth, no 

discontinuities) curve traced by 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉. At each point on the 

curve, the tangent vector is given by 𝐫′(𝑡) = 〈𝑥′(𝑡), 𝑦′(𝑡), 𝑧′(𝑡)〉. The 

magnitude of the tangent vector, |𝐫′(𝑡)|, can be interpreted as the object’s speed. 

For most curves, not surprisingly, the speed of an object can vary. In a rough 

sense, the speed of an object dictates the segmentation of the curve.  

 

         

 

Example 20.1: Sketch the curve traced by 𝐫(𝑡) = 〈𝑡, 𝑡2〉 for 0 ≤ 𝑡 ≤ 4. 

 

Solution: The curve is shown below. It is a parabola 𝑦 = 𝑥2 from (0,0) to 

(4,16). The values for integer values of 𝑡 are shown on the graph. 

 

 
 

The segments of the curve between consecutive integer values of 𝑡 vary in 

length. If 𝑡 is a unit of time, then the object traverses each segment in the same 

amount of time. Thus, the object must move faster in order to traverse longer 

segments. The segmentation of the curve in terms of a unit time interval 𝑡 is not 

consistent. The table below shows the object’s position, velocity and speed for 

integer values of 𝑡: 
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𝑡 𝐫(𝑡) = 〈𝑡, 𝑡2〉 𝐫′(𝑡) = 〈1,2𝑡〉 |𝐫′(𝑡)| = √1 + 4𝑡2 

0 〈0,0〉 〈1,0〉 1 

1 〈1,1〉 〈1,2〉 √5 

2 〈2,4〉 〈1,4〉 √17 

3 〈3,9〉 〈1,6〉 √37 

4 〈4,16〉 〈1,8〉 √65 

 

To control the speed of the object, we can force all tangent vectors to have a 

length of 1 unit. This is called the unit tangent vector, and is given by 

 

𝐓(𝑡) =
𝐫′(𝑡)

|𝐫′(𝑡)|
 . 

 

This means that |𝐓(𝑡)| = 1. 

 

         

 

Example 20.2: Find 𝐓(𝑡), where 𝐫(𝑡) = 〈𝑡, 𝑡2〉. 
 

Solution: From the previous example, we have 𝐫′(𝑡) = 〈1,2𝑡〉 and |𝐫′(𝑡)| =

√1 + 4𝑡2. Thus, 

 

𝐓(𝑡) =
𝐫′(𝑡)

|𝐫′(𝑡)|
=

〈1,2𝑡〉

√1 + 4𝑡2
= ⟨

1

√1 + 4𝑡2
,

2𝑡

√1 + 4𝑡2
⟩. 

 

You should verify that |𝐓(𝑡)| = 1. If the object moves along this curve at a 

constant speed of 1 unit of distance per unit of time, then this will force the 

segmentation of the curve into equal-sized segments, so that it can traverse the 

same length each time, per unit of time. This is often called the 𝑑𝑠 segmentation. 

 

         

 

Example 20.3: Find 𝐓(𝑡), where 𝐫(𝑡) = 〈3 cos 𝑡 , 3 sin 𝑡 , 𝑡〉. 
 

Solution: We have 

 

𝐓(𝑡) =
𝐫′(𝑡)

|𝐫′(𝑡)|
=

〈−3 sin 𝑡 , 3 cos 𝑡 , 1〉

√10
= ⟨

−3 sin 𝑡

√10
,
3 cos 𝑡

√10
,

1

√10
⟩. 

 

Note that in this case, the speed of the object is always √10 units of distance per 

unit of time.  
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The unit normal vector is given by 

 

𝐍(𝑡) =
𝐓′(𝑡)

|𝐓′(𝑡)|
 . 

 

The vector N has a length of 1 unit. It is orthogonal to T (that is, 𝐍 ⋅ 𝐓 = 0). For 

an object moving along a differentiable curve, T will point in the object’s 

(tangential) direction of travel, and N will point orthogonal to T, representing 

one component of acceleration. It generally points “inward” to concave side of 

the curve. 

 

         

 

Example 20.4: Find 𝐍(𝑡), where 𝐫(𝑡) = 〈𝑡, 𝑡2〉. 
 

Solution: From Example 20.2, we have  

 

𝐓(𝑡) = ⟨
1

√1 + 4𝑡2
,

2𝑡

√1 + 4𝑡2
⟩. 

 

We now find 𝐓′(𝑡): 

 

𝐓′(𝑡) = ⟨
−4𝑡

(1 + 4𝑡2)3 2⁄
,

2

(1 + 4𝑡2)3 2⁄
⟩. 

 

Now, we need |𝐓′(𝑡)|: 
 

|𝐓′(𝑡)| = √(
−4𝑡

(1 + 4𝑡2)3 2⁄
)

2

+ (
2

(1 + 4𝑡2)3 2⁄
)

2

 . 

 

This simplifies after many steps to  

 

|𝐓′(𝑡)| =
2

1 + 4𝑡2
 . 

 

Thus, the unit normal N is given by 

 

𝐍(𝑡) =
𝐓′(𝑡)

|𝐓′(𝑡)|
=

1

(
2

1 + 4𝑡2)
⟨

−4𝑡

(1 + 4𝑡2)3 2⁄
,

2

(1 + 4𝑡2)3 2⁄
⟩ 

= ⟨
−2𝑡

√1 + 4𝑡2
,

1

√1 + 4𝑡2
⟩. 

 

Note the similarities in T and N and note also that 𝐍 ⋅ 𝐓 = 0. 
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Example 20.5: Find 𝐍(𝑡), where 𝐫(𝑡) = 〈3 cos 𝑡 , 3 sin 𝑡 , 𝑡〉. 
 

Solution: From Example 20.3, we have 

 

𝐓(𝑡) = ⟨−
3 sin 𝑡

√10
,
3 cos 𝑡

√10
,

1

√10
⟩. 

 

We find 𝐓′(𝑡): 

 

𝐓′(𝑡) = ⟨−
3 cos 𝑡

√10
, −

3 sin 𝑡

√10
, 0⟩. 

Note that 

 

|𝐓′(𝑡)| = √(−
3 cos 𝑡

√10
)

2

+ (−
3 sin 𝑡

√10
)

2

=
3

√10
 . 

 

Thus, 

 

𝐍(𝑡) =
𝐓′(𝑡)

|𝐓′(𝑡)|
=

⟨−
3 cos 𝑡

√10
, −

3 sin 𝑡

√10
, 0⟩

3

√10

= 〈− cos 𝑡 , − sin 𝑡 , 0〉. 

 

Observe that |𝐍(𝑡)| = 1 and that 𝐍 ⋅ 𝐓 = 0. 
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