
Practice Problems, Test 3/Final, MAT267 

 

1. Evaluate this integral using polar notation: 

 

∫ ∫ (𝑥2 + 𝑦2) 𝑑𝑦
√16−𝑥2

0

 𝑑𝑥
−3

−4

+ ∫ ∫ (𝑥2 + 𝑦2) 𝑑𝑦
√16−𝑥2

√9−𝑥2
 𝑑𝑥

3

−3

+ ∫ ∫ (𝑥2 + 𝑦2) 𝑑𝑦
√16−𝑥2

0

 𝑑𝑥
4

3

. 

 

2. Suppose region E is between two hemispheres of radius 2 and radius 5 above the xy-plane. Set us 

and evaluate ∭ 𝑥2 + 𝑦2 + 𝑧2
𝐸

 𝑑𝑉. 

 

3. Set up an integral and find the volume contained in the solid bounded by the xy-plane, the plane 

𝑧 = 𝑥, the paraboloid 𝑥 = 9 − 𝑦2 such that x is positive. 

 

4. Find the volume within the region bounded by 𝑧 = 𝑥2 + 𝑦2 and 𝑧 = 32 − 𝑥2 − 𝑦2. 

 

5. Find ∭ 𝑑𝑉
𝐸

 where E is the tetrahedron with vertices (0,0,0), (2,0,0), (0,3,0) and (0,0,6). 

 

6. Convert the rectangular coordinate (2, –2, 5) to (𝜌, 𝜃, 𝜑). 

 

7. A solid is bounded below by a circular cone (vertex at the origin) and above by a sphere (center at 

the origin) such that (2,1,5) lies on the rim where the cone and sphere intersect. (This solid is 

called a spherical wedge. It looks like an ice-cream cone). Find its volume. 

 

8. A particle follows a straight-line path from (1,2) to (5,7) within the vector field 𝐹(𝑥, 𝑦) =

〈𝑥𝑦, 𝑦2〉. Find the work. (That is, find ∫ 𝐹 ∙ 𝑑𝑟
𝐶

 where C is the path of the particle.) 

 

9. Show that 𝐹(𝑥, 𝑦) = 〈6𝑥 + 5𝑦, 5𝑥 + 4〉 is conservative, then find 𝑓(𝑥, 𝑦) such that ∇𝑓 = 𝐹. 

  

10. Find ∫ 𝐹 ∙ 𝑑𝑟
𝐶

 where 𝐹(𝑥, 𝑦) = 〈4𝑥𝑦3, 6𝑥2𝑦2〉 and C is a sequence of straight lines from (0,0) to 

(1,3) to (4,7) to (9,5) to (2,1). 

 

11. Find ∫ 𝐹 ∙ 𝑑𝑟
𝐶

 where 𝐹(𝑥, 𝑦) = 〈3𝑦, −2𝑥〉 and C is the path starting at (0,0) to (4,0) to (4,4) back 

to (0,0). 

 

12. Find ∫ 𝐹 ∙ 𝑑𝑟
𝐶

 where 𝐹(𝑥, 𝑦) = 〈10𝑦, 12𝑥〉 and C is a circle of radius 4 centered at the origin 

traced clockwise. 

 

13. Find ∫ 𝐹 ∙ 𝑑𝑟
𝐶

 where 𝐹(𝑥, 𝑦) = 〈sin 𝑦 , 𝑥 cos 𝑦〉 and C is an ellipse centered at (5,4) with minor 

axis 7 and major axis 43, traversed clockwise on a Tuesday with Pink Floyd’s “Animals” playing 

in the person’s earbuds. 

 

14. Find the work done by 𝐹(𝑥, 𝑦) = 〈𝑧, −𝑧, 𝑥2 − 𝑦2〉 along the path from (2,0,0) to (0,4,0) to (0,0,8) 

back to (2,0,0).  

 

 



Answers and discussion. 

 

1. The polar integral is ∫ ∫ 𝑟3 𝑑𝑟 
4

3
𝑑𝜃

𝜋

0
. It evaluates to 

175

4
𝜋. 

2. This is best done in spherical coordinates. We have ∫ ∫ ∫ 𝜌4 sin 𝜑  𝑑𝜌
5

2
 𝑑𝜑

𝜋/2

0
 𝑑𝜃.

2𝜋

0
  It evaluates 

to 
6186

5
𝜋. 

3. The integral is ∫ ∫ ∫ 𝑑𝑧
𝑥

0

9−𝑦2

0
 𝑑𝑥 𝑑𝑦

3

−3
.  It evaluates to 

648

5
. 

4. The two surfaces intersect at 𝑥2 + 𝑦2 = 16, a circle of radius 4. Thus, it’s best to use cylindrical 

coordinates. The integral is ∫ ∫ ∫ 𝑑𝑧
32−𝑟2

𝑟2  𝑟 𝑑𝑟
4

0
 𝑑𝜃

2𝜋

0
. It evaluates to 256𝜋. 

5. Let’s use a dz dy dz ordering. The sloping face is a plane, 
𝑥

2
+

𝑦

3
+

𝑧

6
= 1, or 3𝑥 + 2𝑦 + 𝑧 = 6. 

Solving for z, we get 𝑧 = 6 − 3𝑥 − 2𝑦. Thus, the bounds for z are 0 ≤ 𝑧 ≤ 6 − 3𝑥 − 2𝑦. Now 

looking at the “footprint” region in the xy-plane, and choosing to integrate with respect to y, the 

line connecting (2,0) and (0,3) is 𝑦 = 3 −
3

2
𝑥, so the y-bounds are 0 ≤ 𝑦 ≤ 3 −

3

2
𝑥. The x-

bounds are 0 ≤ 𝑥 ≤ 2, and the integral is ∫ ∫ ∫ 𝑑𝑧  𝑑𝑦  𝑑𝑥
6−3𝑥−2𝑦

0

3−
3

2
𝑥

0

2

0
.  It evaluates to 6. 

6. The radius is 𝜌 = √22 + (−2)2 + 52 = √33. The x and y coordinates lie in quadrant 4, at an 

angle of 45 degrees sloping downward, or −
𝜋

4
. However, we use the positive equivalent, 

7𝜋

4
.  

Angle 𝜑 = tan1 2√2

5
≈ 0.5148. Thus, (2, –2, 5) is equivalent to (√33,

7𝜋

4
, 0.5148). 

7. The good news is that in spherical coordinates, all bounds are constants. For 𝜌, we have 

√22 + 12 + 52 = √30, so 0 ≤ 𝜌 ≤ √30. Since the region sweeps entirely around the z-axis, we 

have 0 ≤ 𝜃 ≤ 2𝜋. To find bounds for 𝜑, note that the point (2,1,5) forms one corner of a right-

triangle with (0,0,0) and (0,0,5) as the other corners, so that cos 𝜑 =
5

√30
. Thus, the bounds for 𝜑 

are 0 ≤ 𝜑 ≤ cos−1 5

√30
. The integral is ∫ ∫ ∫ 𝜌2 sin 𝜑

√30

0
 𝑑𝜌 

cos−1 5

√30

0
𝑑𝜑

2𝜋

0
 𝑑𝜃.  The inner 

integral gives ∫ 𝜌2 𝑑𝜌
√30

0
=

1

3
(√30)

3
. This is a constant so we move it to the front. Next, we 

integrate with respect to 𝜑: ∫ sin 𝜑  𝑑𝜑 
cos−1 5

√30

0
= [− cos 𝜑]

0

cos−1 5

√30 = − cos (cos−1 5

√30
) –  

(− cos 0) = −
5

√30
+ 1. Lastly, ∫ 𝑑𝜃

2𝜋

0
= 2𝜋. Thus, the volume is the product of these three 

constants: 
1

3
(√30)

3
(1 −

5

√30
) 2𝜋. 

8. The vector field is not conservative, so we must parameterize the path. We get 𝑟(𝑡) =
〈1 + 4𝑡, 2 + 5𝑡〉, for 0 ≤ 𝑡 ≤ 1. Thus, 𝑑𝑟 = 〈4,5〉. Furthermore, substituting to get F in terms of t 

gives the following: 𝐹(𝑥(𝑡), 𝑦(𝑡)) = 〈(1 + 4𝑡)(2 + 5𝑡), (2 + 5𝑡)2〉 = 〈20𝑡2 + 13𝑡 + 2, 25𝑡2 +
20𝑡 + 4〉. Thus, 𝐹 ∙ 𝑑𝑟 = 4(20𝑡2 + 13𝑡 + 2) + 5(25𝑡2 + 20𝑡 + 4) = 205𝑡2 + 152𝑡 + 28. This 

is integrated from 0 to 1, and you get 
517

3
. 

9. We have 𝑀𝑦 = 5 = 𝑁𝑥, so it’s conservative. We need 𝑓(𝑥, 𝑦) such that 𝑓𝑥 = 𝑀 and 𝑓𝑦 = 𝑁. So 

we integrate: ∫ 𝑀 𝑑𝑥 = ∫(6𝑥 + 5𝑦)𝑑𝑥 = 3𝑥2 + 5𝑥𝑦 and ∫ 𝑁 𝑑𝑦 = ∫(5𝑥 + 4)𝑑𝑦 = 5𝑥𝑦 + 4𝑦. 

Thus, 𝑓(𝑥, 𝑦) = 3𝑥2 + 5𝑥𝑦 + 4𝑦, which can be easily checked to show that ∇𝑓 = 𝐹. 

10. Always check to see if the field is conservative. If it is, you don’t need to parameterize paths! In 

this case, we have 𝑀𝑦 = 12𝑥𝑦2 = 𝑁𝑥, so F is conservative. We find its potential function. Using 

a technique like in #9, we find that 𝑓(𝑥, 𝑦) = 2𝑥2𝑦3. Thus, ∫ 𝐹 ∙ 𝑑𝑟
𝐶

= 2𝑥2𝑦3|(0,0)
(2,1)

=

2(2)2(1)3 = 8. You only need to evaluate between the endpoints. 



11. The vector field is not conservative, but the path is a closed loop, so we use Green’s Theorem: 

∬ (𝑁𝑥 − 𝑀𝑦)
𝑅

 𝑑𝐴. The integrand is –5, so we have −5 ∬ 𝑑𝐴
𝑅

, where the double integral is just 

the area over the region, which is a triangle with base 4 and height 4, so −5 ∬ 𝑑𝐴
𝑅

= −5(8) =

−40. 

12. Like #11, the field F is not conservative but the path is a loop. We find that 𝑁𝑥 − 𝑀𝑦 = 2, so 

using Green’s Theorem, and recognizing that the region is a circle with radius 4, the line integral 

is 2(𝜋(4)2) = 32𝜋…. But wait! The path was traversed clockwise. To use Green’s Theorem, we 

must traverse counterclockwise, so the actual result is −32𝜋. 

13. The vector field is conservative and the path is a loop, so the answer is 0. 

14. We need two things: ∇ × 𝐹, which is 〈1 − 2𝑦, 1 − 2𝑥, 0〉, and a normal vector n to this surface. 

The plane passing through the three given points is 
𝑥

2
+

𝑦

4
+

𝑧

8
= 1, or 4𝑥 + 2𝑦 + 𝑧 = 8, and in 

this form of a plane’s equation, the normal is just the coefficients, so 𝑛 = 〈4,2,1〉. Thus, we 

calculate ∬ (∇ × 𝐹) ∙ 𝑛 𝑑𝑆
𝑅

= ∫ ∫ (6 − 4𝑥 − 8𝑦) 𝑑𝑦 𝑑𝑥
4−2𝑥

0

2

0
= −

88

3
.   Note that the bounds of 

the double integral refer to the “footprint” made by this surface over the xy-plane, which in this 

case is just a triangle. 

 

As usual, if you see an error, please let me know, surgent@asu.edu  

mailto:surgent@asu.edu

