Practice Problems, Test 3/Final, MAT267

1. Evaluate this integral using polar notation:

$$
\int_{-4}^{-3} \int_{0}^{\sqrt{16-x^{2}}}\left(x^{2}+y^{2}\right) d y d x+\int_{-3}^{3} \int_{\sqrt{9-x^{2}}}^{\sqrt{16-x^{2}}}\left(x^{2}+y^{2}\right) d y d x+\int_{3}^{4} \int_{0}^{\sqrt{16-x^{2}}}\left(x^{2}+y^{2}\right) d y d x
$$

2. Suppose region E is between two hemispheres of radius 2 and radius 5 above the $x y$-plane. Set us and evaluate $\iiint_{E} x^{2}+y^{2}+z^{2} d V$.
3. Set up an integral and find the volume contained in the solid bounded by the $x y$-plane, the plane $z=x$, the paraboloid $x=9-y^{2}$ such that x is positive.
4. Find the volume within the region bounded by $z=x^{2}+y^{2}$ and $z=32-x^{2}-y^{2}$.
5. Find $\iiint_{E} d V$ where E is the tetrahedron with vertices $(0,0,0),(2,0,0),(0,3,0)$ and $(0,0,6)$.
6. Convert the rectangular coordinate $(2,-2,5)$ to (ρ, θ, φ).
7. A solid is bounded below by a circular cone (vertex at the origin) and above by a sphere (center at the origin) such that $(2,1,5)$ lies on the rim where the cone and sphere intersect. (This solid is called a spherical wedge. It looks like an ice-cream cone). Find its volume.
8. A particle follows a straight-line path from (1,2) to $(5,7)$ within the vector field $F(x, y)=$ $\left\langle x y, y^{2}\right\rangle$. Find the work. (That is, find $\int_{C} F \cdot d r$ where C is the path of the particle.)
9. Show that $F(x, y)=\langle 6 x+5 y, 5 x+4\rangle$ is conservative, then find $f(x, y)$ such that $\nabla f=F$.
10. Find $\int_{C} F \cdot d r$ where $F(x, y)=\left\langle 4 x y^{3}, 6 x^{2} y^{2}\right\rangle$ and C is a sequence of straight lines from $(0,0)$ to $(1,3)$ to $(4,7)$ to $(9,5)$ to $(2,1)$.
11. Find $\int_{C} F \cdot d r$ where $F(x, y)=\langle 3 y,-2 x\rangle$ and C is the path starting at $(0,0)$ to $(4,0)$ to $(4,4)$ back to $(0,0)$.
12. Find $\int_{C} F \cdot d r$ where $F(x, y)=\langle 10 y, 12 x\rangle$ and C is a circle of radius 4 centered at the origin traced clockwise.
13. Find $\int_{C} F \cdot d r$ where $F(x, y)=\langle\sin y, x \cos y\rangle$ and C is an ellipse centered at $(5,4)$ with minor axis 7 and major axis 43, traversed clockwise on a Tuesday with Pink Floyd's "Animals" playing in the person's earbuds.
14. Find the work done by $F(x, y)=\left\langle z,-z, x^{2}-y^{2}\right\rangle$ along the path from $(2,0,0)$ to $(0,4,0)$ to $(0,0,8)$ back to $(2,0,0)$.

Answers and discussion.

1. The polar integral is $\int_{0}^{\pi} \int_{3}^{4} r^{3} d r d \theta$. It evaluates to $\frac{175}{4} \pi$.
2. This is best done in spherical coordinates. We have $\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{2}^{5} \rho^{4} \sin \varphi d \rho d \varphi d \theta$. It evaluates to $\frac{6186}{5} \pi$.
3. The integral is $\int_{-3}^{3} \int_{0}^{9-y^{2}} \int_{0}^{x} d z d x d y$. It evaluates to $\frac{648}{5}$.
4. The two surfaces intersect at $x^{2}+y^{2}=16$, a circle of radius 4 . Thus, it's best to use cylindrical coordinates. The integral is $\int_{0}^{2 \pi} \int_{0}^{4} \int_{r^{2}}^{32-r^{2}} d z r d r d \theta$. It evaluates to 256π.
5. Let's use a $d z d y d z$ ordering. The sloping face is a plane, $\frac{x}{2}+\frac{y}{3}+\frac{z}{6}=1$, or $3 x+2 y+z=6$. Solving for z, we get $z=6-3 x-2 y$. Thus, the bounds for z are $0 \leq z \leq 6-3 x-2 y$. Now looking at the "footprint" region in the xy-plane, and choosing to integrate with respect to y , the line connecting $(2,0)$ and $(0,3)$ is $y=3-\frac{3}{2} x$, so the y-bounds are $0 \leq y \leq 3-\frac{3}{2} x$. The x bounds are $0 \leq x \leq 2$, and the integral is $\int_{0}^{2} \int_{0}^{3-\frac{3}{2} x} \int_{0}^{6-3 x-2 y} d z d y d x$. It evaluates to 6 .
6. The radius is $\rho=\sqrt{2^{2}+(-2)^{2}+5^{2}}=\sqrt{33}$. The x and y coordinates lie in quadrant 4 , at an angle of 45 degrees sloping downward, or $-\frac{\pi}{4}$. However, we use the positive equivalent, $\frac{7 \pi}{4}$. Angle $\varphi=\tan ^{1} \frac{2 \sqrt{2}}{5} \approx 0.5148$. Thus, $(2,-2,5)$ is equivalent to $\left(\sqrt{33}, \frac{7 \pi}{4}, 0.5148\right)$.
7. The good news is that in spherical coordinates, all bounds are constants. For ρ, we have $\sqrt{2^{2}+1^{2}+5^{2}}=\sqrt{30}$, so $0 \leq \rho \leq \sqrt{30}$. Since the region sweeps entirely around the z -axis, we have $0 \leq \theta \leq 2 \pi$. To find bounds for φ, note that the point $(2,1,5)$ forms one corner of a righttriangle with $(0,0,0)$ and $(0,0,5)$ as the other corners, so that $\cos \varphi=\frac{5}{\sqrt{30}}$. Thus, the bounds for φ are $0 \leq \varphi \leq \cos ^{-1} \frac{5}{\sqrt{30}}$. The integral is $\int_{0}^{2 \pi} \int_{0}^{\cos ^{-1} \frac{5}{\sqrt{30}}} \int_{0}^{\sqrt{30}} \rho^{2} \sin \varphi d \rho d \varphi d \theta$. The inner integral gives $\int_{0}^{\sqrt{30}} \rho^{2} d \rho=\frac{1}{3}(\sqrt{30})^{3}$. This is a constant so we move it to the front. Next, we integrate with respect to $\varphi: \int_{0}^{\cos ^{-1} \frac{5}{\sqrt{30}}} \sin \varphi d \varphi=[-\cos \varphi]_{0}^{\cos ^{-1} \frac{5}{\sqrt{30}}}=-\cos \left(\cos ^{-1} \frac{5}{\sqrt{30}}\right)-$ $(-\cos 0)=-\frac{5}{\sqrt{30}}+1$. Lastly, $\int_{0}^{2 \pi} d \theta=2 \pi$. Thus, the volume is the product of these three constants: $\frac{1}{3}(\sqrt{30})^{3}\left(1-\frac{5}{\sqrt{30}}\right) 2 \pi$.
8. The vector field is not conservative, so we must parameterize the path. We get $r(t)=$ $\langle 1+4 t, 2+5 t\rangle$, for $0 \leq t \leq 1$. Thus, $d r=\langle 4,5\rangle$. Furthermore, substituting to get F in terms of t gives the following: $F(x(t), y(t))=\left\langle(1+4 t)(2+5 t),(2+5 t)^{2}\right\rangle=\left\langle 20 t^{2}+13 t+2,25 t^{2}+\right.$ $20 t+4\rangle$. Thus, $F \cdot d r=4\left(20 t^{2}+13 t+2\right)+5\left(25 t^{2}+20 t+4\right)=205 t^{2}+152 t+28$. This is integrated from 0 to 1 , and you get $\frac{517}{3}$.
9. We have $M_{y}=5=N_{x}$, so it's conservative. We need $f(x, y)$ such that $f_{x}=M$ and $f_{y}=N$. So we integrate: $\int M d x=\int(6 x+5 y) d x=3 x^{2}+5 x y$ and $\int N d y=\int(5 x+4) d y=5 x y+4 y$. Thus, $f(x, y)=3 x^{2}+5 x y+4 y$, which can be easily checked to show that $\nabla f=F$.
10. Always check to see if the field is conservative. If it is, you don't need to parameterize paths! In this case, we have $M_{y}=12 x y^{2}=N_{x}$, so F is conservative. We find its potential function. Using a technique like in \#9, we find that $f(x, y)=2 x^{2} y^{3}$. Thus, $\int_{C} F \cdot d r=\left.2 x^{2} y^{3}\right|_{(0,0)} ^{(2,1)}=$ $2(2)^{2}(1)^{3}=8$. You only need to evaluate between the endpoints.
11. The vector field is not conservative, but the path is a closed loop, so we use Green's Theorem: $\iint_{R}\left(N_{x}-M_{y}\right) d A$. The integrand is -5 , so we have $-5 \iint_{R} d A$, where the double integral is just the area over the region, which is a triangle with base 4 and height 4 , so $-5 \iint_{R} d A=-5(8)=$ -40 .
12. Like \#11, the field F is not conservative but the path is a loop. We find that $N_{x}-M_{y}=2$, so using Green's Theorem, and recognizing that the region is a circle with radius 4 , the line integral is $2\left(\pi(4)^{2}\right)=32 \pi \ldots$. But wait! The path was traversed clockwise. To use Green's Theorem, we must traverse counterclockwise, so the actual result is -32π.
13. The vector field is conservative and the path is a loop, so the answer is 0 .
14. We need two things: $\nabla \times F$, which is $\langle 1-2 y, 1-2 x, 0\rangle$, and a normal vector n to this surface. The plane passing through the three given points is $\frac{x}{2}+\frac{y}{4}+\frac{z}{8}=1$, or $4 x+2 y+z=8$, and in this form of a plane's equation, the normal is just the coefficients, so $n=\langle 4,2,1\rangle$. Thus, we calculate $\iint_{R}(\nabla \times F) \cdot n d S=\int_{0}^{2} \int_{0}^{4-2 x}(6-4 x-8 y) d y d x=-\frac{88}{3}$. Note that the bounds of the double integral refer to the "footprint" made by this surface over the $x y$-plane, which in this case is just a triangle.

As usual, if you see an error, please let me know, surgent@asu.edu

