Practice Problems, Test 3/Final, MAT267

1. Evaluate this integral using polar notation:

$$\int_{-4}^{-3} \int_{0}^{\sqrt{16-x^2}} (x^2 + y^2) \, dy \, dx + \int_{-3}^{3} \int_{\sqrt{9-x^2}}^{\sqrt{16-x^2}} (x^2 + y^2) \, dy \, dx + \int_{3}^{4} \int_{0}^{\sqrt{16-x^2}} (x^2 + y^2) \, dy \, dx.$$

- 2. Suppose region *E* is between two hemispheres of radius 2 and radius 5 above the *xy*-plane. Set us and evaluate $\iiint_E x^2 + y^2 + z^2 dV$.
- 3. Set up an integral and find the volume contained in the solid bounded by the *xy*-plane, the plane z = x, the paraboloid $x = 9 y^2$ such that *x* is positive.
- 4. Find the volume within the region bounded by $z = x^2 + y^2$ and $z = 32 x^2 y^2$.
- 5. Find $\iiint_E dV$ where E is the tetrahedron with vertices (0,0,0), (2,0,0), (0,3,0) and (0,0,6).
- 6. Convert the rectangular coordinate (2, -2, 5) to (ρ, θ, φ) .
- 7. A solid is bounded below by a circular cone (vertex at the origin) and above by a sphere (center at the origin) such that (2,1,5) lies on the rim where the cone and sphere intersect. (This solid is called a *spherical wedge*. It looks like an ice-cream cone). Find its volume.
- 8. A particle follows a straight-line path from (1,2) to (5,7) within the vector field $F(x, y) = \langle xy, y^2 \rangle$. Find the work. (That is, find $\int_C F \cdot dr$ where C is the path of the particle.)
- 9. Show that $F(x, y) = \langle 6x + 5y, 5x + 4 \rangle$ is conservative, then find f(x, y) such that $\nabla f = F$.
- 10. Find $\int_C F \cdot dr$ where $F(x, y) = \langle 4xy^3, 6x^2y^2 \rangle$ and *C* is a sequence of straight lines from (0,0) to (1,3) to (4,7) to (9,5) to (2,1).
- 11. Find $\int_C F \cdot dr$ where $F(x, y) = \langle 3y, -2x \rangle$ and *C* is the path starting at (0,0) to (4,0) to (4,4) back to (0,0).
- 12. Find $\int_C F \cdot dr$ where $F(x, y) = \langle 10y, 12x \rangle$ and C is a circle of radius 4 centered at the origin traced clockwise.
- 13. Find $\int_C F \cdot dr$ where $F(x, y) = \langle \sin y, x \cos y \rangle$ and *C* is an ellipse centered at (5,4) with minor axis 7 and major axis 43, traversed clockwise on a Tuesday with Pink Floyd's "Animals" playing in the person's earbuds.
- 14. Find the work done by $F(x, y) = \langle z, -z, x^2 y^2 \rangle$ along the path from (2,0,0) to (0,4,0) to (0,0,8) back to (2,0,0).

Answers and discussion.

- The polar integral is ∫₀^π ∫₃⁴ r³ dr dθ. It evaluates to ¹⁷⁵/₄π.
 This is best done in spherical coordinates. We have ∫₀^{2π} ∫₀^{π/2} ∫₂⁵ ρ⁴ sin φ dρ dφ dθ. It evaluates to $\frac{6186}{5}\pi$.
- 3. The integral is $\int_{-3}^{3} \int_{0}^{9-y^2} \int_{0}^{x} dz \, dx \, dy$. It evaluates to $\frac{648}{5}$.
- 4. The two surfaces intersect at $x^2 + y^2 = 16$, a circle of radius 4. Thus, it's best to use cylindrical coordinates. The integral is $\int_0^{2\pi} \int_0^4 \int_{r^2}^{32-r^2} dz \ r \ dr \ d\theta$. It evaluates to 256 π .
- 5. Let's use a dz dy dz ordering. The sloping face is a plane, $\frac{x}{2} + \frac{y}{2} + \frac{z}{6} = 1$, or 3x + 2y + z = 6. Solving for z, we get z = 6 - 3x - 2y. Thus, the bounds for z are $0 \le z \le 6 - 3x - 2y$. Now looking at the "footprint" region in the xy-plane, and choosing to integrate with respect to y, the line connecting (2,0) and (0,3) is $y = 3 - \frac{3}{2}x$, so the y-bounds are $0 \le y \le 3 - \frac{3}{2}x$. The xbounds are $0 \le x \le 2$, and the integral is $\int_0^2 \int_0^{3-\frac{3}{2}x} \int_0^{6-3x-2y} dz \, dy \, dx$. It evaluates to 6.
- 6. The radius is $\rho = \sqrt{2^2 + (-2)^2 + 5^2} = \sqrt{33}$. The x and y coordinates lie in quadrant 4, at an angle of 45 degrees sloping downward, or $-\frac{\pi}{4}$. However, we use the positive equivalent, $\frac{7\pi}{4}$. Angle $\varphi = \tan^{1} \frac{2\sqrt{2}}{5} \approx 0.5148$. Thus, (2, -2, 5) is equivalent to $\left(\sqrt{33}, \frac{7\pi}{4}, 0.5148\right)$.
- 7. The good news is that in spherical coordinates, all bounds are constants. For ρ , we have $\sqrt{2^2 + 1^2 + 5^2} = \sqrt{30}$, so $0 \le \rho \le \sqrt{30}$. Since the region sweeps entirely around the z-axis, we have $0 \le \theta \le 2\pi$. To find bounds for φ , note that the point (2,1,5) forms one corner of a righttriangle with (0,0,0) and (0,0,5) as the other corners, so that $\cos \varphi = \frac{5}{\sqrt{20}}$. Thus, the bounds for φ are $0 \le \varphi \le \cos^{-1} \frac{5}{\sqrt{30}}$. The integral is $\int_0^{2\pi} \int_0^{\cos^{-1} \frac{5}{\sqrt{30}}} \int_0^{\sqrt{30}} \rho^2 \sin \varphi \ d\rho \ d\varphi \ d\theta$. The inner integral gives $\int_0^{\sqrt{30}} \rho^2 d\rho = \frac{1}{3} (\sqrt{30})^3$. This is a constant so we move it to the front. Next, we integrate with respect to φ : $\int_0^{\cos^{-1}\frac{5}{\sqrt{30}}} \sin \varphi \, d\varphi = \left[-\cos \varphi\right]_0^{\cos^{-1}\frac{5}{\sqrt{30}}} = -\cos\left(\cos^{-1}\frac{5}{\sqrt{30}}\right) - \cos\left(\cos^{-1}\frac{5}{\sqrt{30}}\right) = -\cos\left(\cos^{-1}\frac{5}{\sqrt{30}}\right) = -\cos\left(\cos^{-1}\frac{5}{\sqrt{30}}\right$ $(-\cos 0) = -\frac{5}{\sqrt{30}} + 1$. Lastly, $\int_0^{2\pi} d\theta = 2\pi$. Thus, the volume is the product of these three constants: $\frac{1}{3} (\sqrt{30})^3 (1 - \frac{5}{\sqrt{30}}) 2\pi$.
- The vector field is not conservative, so we must parameterize the path. We get r(t) =8. $\langle 1 + 4t, 2 + 5t \rangle$, for $0 \le t \le 1$. Thus, $dr = \langle 4, 5 \rangle$. Furthermore, substituting to get F in terms of t gives the following: $F(x(t), y(t)) = \langle (1+4t)(2+5t), (2+5t)^2 \rangle = \langle 20t^2 + 13t + 2, 25t^2 + 13t + 2, 25t^2 \rangle$ 20t + 4). Thus, $F \cdot dr = 4(20t^2 + 13t + 2) + 5(25t^2 + 20t + 4) = 205t^2 + 152t + 28$. This is integrated from 0 to 1, and you get $\frac{517}{3}$.
- 9. We have $M_y = 5 = N_x$, so it's conservative. We need f(x, y) such that $f_x = M$ and $f_y = N$. So we integrate: $\int M \, dx = \int (6x + 5y) \, dx = 3x^2 + 5xy$ and $\int N \, dy = \int (5x + 4) \, dy = 5xy + 4y$. Thus, $f(x, y) = 3x^2 + 5xy + 4y$, which can be easily checked to show that $\nabla f = F$.
- 10. Always check to see if the field is conservative. If it is, you don't need to parameterize paths! In this case, we have $M_y = 12xy^2 = N_x$, so F is conservative. We find its potential function. Using a technique like in #9, we find that $f(x, y) = 2x^2y^3$. Thus, $\int_C F \cdot dr = 2x^2y^3|_{(0,0)}^{(2,1)} =$ $2(2)^{2}(1)^{3} = 8$. You only need to evaluate between the endpoints.

- 11. The vector field is not conservative, but the path is a closed loop, so we use Green's Theorem: $\iint_R (N_x - M_y) \, dA$. The integrand is -5, so we have $-5 \iint_R dA$, where the double integral is just the area over the region, which is a triangle with base 4 and height 4, so $-5 \iint_R dA = -5(8) = -40$.
- 12. Like #11, the field F is not conservative but the path is a loop. We find that $N_x M_y = 2$, so using Green's Theorem, and recognizing that the region is a circle with radius 4, the line integral is $2(\pi(4)^2) = 32\pi$ But wait! The path was traversed clockwise. To use Green's Theorem, we must traverse counterclockwise, so the actual result is -32π .
- 13. The vector field is conservative and the path is a loop, so the answer is 0.
- 14. We need two things: $\nabla \times F$, which is $\langle 1 2y, 1 2x, 0 \rangle$, and a normal vector *n* to this surface. The plane passing through the three given points is $\frac{x}{2} + \frac{y}{4} + \frac{z}{8} = 1$, or 4x + 2y + z = 8, and in this form of a plane's equation, the normal is just the coefficients, so $n = \langle 4, 2, 1 \rangle$. Thus, we calculate $\iint_R (\nabla \times F) \cdot n \, dS = \int_0^2 \int_0^{4-2x} (6 - 4x - 8y) \, dy \, dx = -\frac{88}{3}$. Note that the bounds of the double integral refer to the "footprint" made by this surface over the *xy*-plane, which in this case is just a triangle.

As usual, if you see an error, please let me know, surgent@asu.edu