Math 267 Practice Sheet – Midterm (Test 2)

- 1. What is the domain of $f(x, y) = \frac{1}{\sqrt{2x-y}}$?
- 2. What is the domain of $g(x, y) = \ln(x^2 + 4y)$?
- 3. Find all first and second-order partial derivatives of $f(x, y, z) = x^2 y^3 z^5$.
- 4. Find the slope of the tangent line to $f(x, y) = x^3y y^2$ when x = 1 and y = 2, in the direction of x = 4, y = 3.
- 5. Find the direction of the steepest slope of $g(x, y) = \frac{x}{y^2}$ at x = 3, y = -2. Then find the slope.
- 6. Find a vector normal to the surface $h(x, y) = 3xy + y^2 x^3$ at x = 4, y = 2.
- 7. Find the equation of the tangent plane in #6.
- 8. Larry is measuring a circular cylinder. He measures the height to be 8 m, with a tolerance of ± 2 cm, and the radius as 3 m, with a tolerance of ± 3 cm. Using differentials, find the approximate range of tolerance in the volume of this solid.
- 9. Let $g(x, y) = x^3 + y^3 3x 12y + 1$. Find all critical points and classify them as min, max or saddle points.
- 10. Consider the map below. Assume C is a saddle, D is a minimum and A is a maximum, and that the surface is everywhere differentiable.

a) Write in the sign (+, -, 0) for the following partial derivatives.

$$f_x(A) = ___ f_x(B) = ___ f_x(E) = ___ f_y(A) = ___ f_y(B) = ___ f_y(E) = ___$$

- b) Suppose P is a path (constraint). Approximate the minimum and maximum values of f constrained to path P.
- c) On the map, draw in the gradient vector at E.

- 11. Let $f(x, y) = 3\sin(x^2 4y)$. Find ∇f .
- 12. Suppose y = f(x(s,t), y(s,t)), and suppose that $\frac{\partial f}{\partial t} = 10, \frac{\partial f}{\partial x} = 2, \frac{\partial f}{\partial y} = 1, \frac{\partial x}{\partial s} = -3, \frac{\partial x}{\partial t} = 4$ and $\frac{\partial y}{\partial s} = 5$. Find the value of $\frac{\partial y}{\partial t}$.
- 13. Find the volume below $z = 2e^{x^2 + y^2}$ over the region in the *xy*-plane shown below.

- 14. Let $z = f(x, y) = 2x^2 + xy \frac{1}{4}y^4 + 4x 2y + 1$. Find the equation of the tangent plane at $x_0 = -2$ and $y_0 = 3$, then use it to estimate f(-2.05, 3.1). Do not use a calculator.
- 15. Find $\int_{-1}^{2} \int_{3}^{4} x(1-y) \, dy \, dx$.
- 16. Rewrite as a single double-integral: $\int_0^2 \int_0^{2x} xy \, dy \, dx + \int_2^6 \int_0^{6-x} xy \, dy \, dx.$
- 17. Using only geometry, find the volume below $f(x, y) = \sqrt{1 x^2 y^2}$ over the region in #13.
- 18. Find the volume contained below the paraboloid $z = 4 x^2 y^2$ and above the xy-plane.
- 19. Reverse the order of integration: $\int_0^9 \int_{-\sqrt{9-y}}^{\sqrt{9-y}} dx \, dy.$
- 20. Evaluate #19.

Answers. (report errors to surgent@asu.edu)

1.
$$\{(x,y)|y < 2x\}$$

2. $\{(x,y)|y > -\frac{1}{4}x^2\}$
3. $f_x = 2xy^3z^5, f_y = 3x^2y^2z^5, f_z = 5x^2y^3z^4,$
 $f_{xx} = 2y^3z^5, f_{xy} = 6xy^2z^5, f_{xz} = 10xy^3z^4,$
 $f_{yx} = 6xy^2z^5, f_{yy} = 6x^2yz^5, f_{yz} = 15x^2y^2z^4,$
 $f_{zx} = 10xy^3z^4, f_{zy} = 15x^2y^2z^4, f_{zz} = 20x^2y^3z^3,$

- 4. Direction is $v = \langle 3,1 \rangle$ so we need the unit direction vector, $\langle \frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}} \rangle$. The gradient of f is $\nabla f = \langle f_x, f_y \rangle = \langle 3x^2y, x^3 2y \rangle$. Evaluated at (1,2), we have $\nabla f(1,2) = \langle 6, -3 \rangle$. Thus, the slope will be $\langle \frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}} \rangle \cdot \langle 6, -3 \rangle = \frac{18}{\sqrt{10}} \frac{3}{\sqrt{10}} = \frac{15}{\sqrt{10}} \approx 4.743$.
- 5. The direction of the steepest slope is the gradient of g evaluated at the given point. Thus, $\nabla g = \langle \frac{1}{y^2}, -\frac{2x}{y^3} \rangle \rightarrow \nabla g(3, -2) = \langle \frac{1}{4}, \frac{3}{4} \rangle$. The slope is $\left| \langle \frac{1}{4}, \frac{3}{4} \rangle \right| = \sqrt{\left(\frac{1}{4}\right)^2 + \left(\frac{3}{4}\right)^2} = \frac{\sqrt{10}}{4} \approx 0.791$.
- 6. Gradient vectors are always orthogonal to a contour line, so we create a 4-dimensional function $H(x, y, z) = 3xy + y^2 x^3 z$. Note that $z = 3xy + y^2 x^3$ is a contour of H, so that $\nabla H = (3y 3x^2, 3x + 2y, -1)$, and at (4,2), we have $\nabla H(4,2) = (-42,16, -1)$. Also acceptable is (42, -16, 1).
- 7. The point is (4,2,-36) so we have -42(x-4) + 16(y-2) (z+36) = 0.
- 8. The volume is $V(r, h) = \pi r^2 h$, so therefore, $dV = 2\pi r h dr + \pi r^2 dh$. Evaluating, we have $dV = 2\pi (3)(8)(0.03) + \pi (3)^2(0.02) = \pm 5.089$ cubic meters.

9. (1,2,-17) min, (-1,2,-13) saddle, (1,-2,15) saddle, (-1,-2,19) max. 10. a)

$$f_x(A) = 0$$
 $f_x(B) = +$ $f_x(E) = +$
 $f_y(A) = 0$ $f_y(B) = f_y(E) = -$

b) Min, about 45, max about 115

Orthogonal to the contour, positive slope.

11. $\nabla f = \langle 6x \cos(x^2 - 4y), -12 \cos(x^2 - 4y) \rangle$. 12. $\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \rightarrow 10 = (2)(4) + (1) \frac{\partial y}{\partial t} \rightarrow \frac{\partial y}{\partial t} = 10 - 8 = 2$. Here, y and f are interchangeable.

13. Use polar bounds. The bounds are $0 \le r \le 1, 0 \le \theta \le \frac{\pi}{2}$.

$$\int_0^{\pi/2} \int_0^1 2e^{r^2} r \, dr \, d\theta = \int_0^{\pi/2} \left[e^{r^2} \right]_0^1 d\theta = \int_0^{\pi/2} (e-1) \, d\theta = (e-1) \int_0^{\pi/2} d\theta = \frac{(e-1)\pi}{2}.$$

14. $f_x(x, y) = 4x + y + 4 \rightarrow f_x(-2,3) = -1$, and $f_y(x, y) = x - y^3 - 2 \rightarrow f_y(-2,3) = -31$. We also have $z_0 = -31.25$. Thus, the equation of the tangent plane is z + 31.25 = -(x + 2) - (x + 2)31(y-3). Thus,

$$z + 31.25 = -(-2.05 + 2) - 31(3.1 - 3)$$

$$z + 31.25 = -(-0.05) - 31(0.1)$$

$$z + 31.25 = 0.05 - 3.1$$

$$z + 31.25 = -3.05$$

$$z = -3.05 - 31.25$$

$$z = -34.3$$

- 15. Do the inside integral first: $\int_{3}^{4} x(1-y) \, dy = \left(xy \frac{1}{2}xy^2\right)_{3}^{4} = (4x 8x) \left(3x \frac{9}{2}x\right) = -\frac{5}{2}x.$ Now integrate with respect to x: $\int_{-1}^{2} \left(-\frac{5}{2}x\right) dx = \left(-\frac{5}{4}x^{2}\right)_{-1}^{2} = \left(-\frac{5}{4}(4)\right) - \left(-\frac{5}{4}(1)\right) = -\frac{15}{4}$. 16. $\int_0^4 \int_{y/2}^{6-y} xy \, dx \, dy$
- 17. The solid is a hemisphere of radius 1, but it's being integrated over a quarter circle, so we have just 1/8 of a sphere. The volume of a sphere of radius 1 is $\frac{4}{3}\pi(1)^3 = \frac{4}{3}\pi$, then divided by 8, we have $\frac{1}{6}\pi$.
- 18. The region of integration is a circle of radius 2, so it's advised to use polar. Thus, r ranges between 0 and 2, θ between 0 and 2π . The integrand is $(4 - r^2)r$, where the extra r is from the Jacobian. Thus, we have $\int_0^{2\pi} \int_0^2 (4r - r^3) dr \, d\theta$. The inner integral works out to be 4, the out to be 2π , so the volume is 8π .

19. The region is the parabola $y = 9 - x^2$ above the x-axis, so we have $\int_{-3}^{3} \int_{0}^{9-x^2} dy \, dx$. 20.36.