Math 267 Practice Sheet - Midterm (Test 2)

1. What is the domain of $f(x, y)=\frac{1}{\sqrt{2 x-y}}$?
2. What is the domain of $g(x, y)=\ln \left(x^{2}+4 y\right)$?
3. Find all first and second-order partial derivatives of $f(x, y, z)=x^{2} y^{3} z^{5}$.
4. Find the slope of the tangent line to $f(x, y)=x^{3} y-y^{2}$ when $x=1$ and $y=2$, in the direction of $x=4, y=3$.
5. Find the direction of the steepest slope of $g(x, y)=\frac{x}{y^{2}}$ at $x=3, y=-2$. Then find the slope.
6. Find a vector normal to the surface $h(x, y)=3 x y+y^{2}-x^{3}$ at $x=4, y=2$.
7. Find the equation of the tangent plane in \#6.
8. Larry is measuring a circular cylinder. He measures the height to be 8 m , with a tolerance of ± 2 cm , and the radius as 3 m , with a tolerance of $\pm 3 \mathrm{~cm}$. Using differentials, find the approximate range of tolerance in the volume of this solid.
9. Let $g(x, y)=x^{3}+y^{3}-3 x-12 y+1$. Find all critical points and classify them as min, max or saddle points.
10. Consider the map below. Assume C is a saddle, D is a minimum and A is a maximum, and that the surface is everywhere differentiable.

a) Write in the sign $(+,-, 0)$ for the following partial derivatives.

$$
\begin{array}{lll}
f_{x}(A)= & f_{x}(B)=_ & f_{x}(E)=\square \\
f_{y}(A)=_ & f_{y}(B)=_ & f_{y}(E)=\square
\end{array}
$$

b) Suppose P is a path (constraint). Approximate the minimum and maximum values of f constrained to path P.
c) On the map, draw in the gradient vector at E .
11. Let $f(x, y)=3 \sin \left(x^{2}-4 y\right)$. Find ∇f.
12. Suppose $y=f(x(s, t), y(s, t))$, and suppose that $\frac{\partial f}{\partial t}=10, \frac{\partial f}{\partial x}=2, \frac{\partial f}{\partial y}=1, \frac{\partial x}{\partial s}=-3, \frac{\partial x}{\partial t}=4$ and $\frac{\partial y}{\partial s}=5$. Find the value of $\frac{\partial y}{\partial t}$.
13. Find the volume below $z=2 e^{x^{2}+y^{2}}$ over the region in the $x y$-plane shown below.

14. Let $z=f(x, y)=2 x^{2}+x y-\frac{1}{4} y^{4}+4 x-2 y+1$. Find the equation of the tangent plane at $x_{0}=$ -2 and $y_{0}=3$, then use it to estimate $f(-2.05,3.1)$. Do not use a calculator.
15. Find $\int_{-1}^{2} \int_{3}^{4} x(1-y) d y d x$.
16. Rewrite as a single double-integral: $\int_{0}^{2} \int_{0}^{2 x} x y d y d x+\int_{2}^{6} \int_{0}^{6-x} x y d y d x$.
17. Using only geometry, find the volume below $f(x, y)=\sqrt{1-x^{2}-y^{2}}$ over the region in \#13.
18. Find the volume contained below the paraboloid $z=4-x^{2}-y^{2}$ and above the $x y$-plane.
19. Reverse the order of integration: $\int_{0}^{9} \int_{-\sqrt{9-y}}^{\sqrt{9-y}} d x d y$.
20. Evaluate \#19.

Answers. (report errors to surgent@asu.edu)

1. $\{(x, y) \mid y<2 x\}$
2. $\left\{(x, y) \left\lvert\, y>-\frac{1}{4} x^{2}\right.\right\}$
3. $f_{x}=2 x y^{3} z^{5}, f_{y}=3 x^{2} y^{2} z^{5}, f_{z}=5 x^{2} y^{3} z^{4}$,

$$
\begin{array}{ccc}
f_{x x}=2 y^{3} z^{5} & f_{x y}=6 x y^{2} z^{5} & f_{x z}=10 x y^{3} z^{4} \\
f_{y x}=6 x y^{2} z^{5} & f_{y y}=6 x^{2} y z^{5} & f_{y z}=15 x^{2} y^{2} z^{4} \\
f_{z x}=10 x y^{3} z^{4} & f_{z y}=15 x^{2} y^{2} z^{4} & f_{z z}=20 x^{2} y^{3} z^{3}
\end{array}
$$

4. Direction is $v=\langle 3,1\rangle$ so we need the unit direction vector, $\left\langle\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right\rangle$. The gradient of f is $\nabla f=$ $\left\langle f_{x}, f_{y}\right\rangle=\left\langle 3 x^{2} y, x^{3}-2 y\right\rangle$. Evaluated at $(1,2)$, we have $\nabla f(1,2)=\langle 6,-3\rangle$. Thus, the slope will be $\left\langle\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right\rangle \cdot\langle 6,-3\rangle=\frac{18}{\sqrt{10}}-\frac{3}{\sqrt{10}}=\frac{15}{\sqrt{10}} \approx 4.743$.
5. The direction of the steepest slope is the gradient of g evaluated at the given point. Thus, $\nabla g=$ $\left\langle\frac{1}{y^{2}},-\frac{2 x}{y^{3}}\right\rangle \rightarrow \nabla g(3,-2)=\left\langle\frac{1}{4}, \frac{3}{4}\right\rangle$. The slope is $\left|\left\langle\frac{1}{4}, \frac{3}{4}\right\rangle\right|=\sqrt{\left(\frac{1}{4}\right)^{2}+\left(\frac{3}{4}\right)^{2}}=\frac{\sqrt{10}}{4} \approx 0.791$.
6. Gradient vectors are always orthogonal to a contour line, so we create a 4-dimensional function $H(x, y, z)=3 x y+y^{2}-x^{3}-z$. Note that $z=3 x y+y^{2}-x^{3}$ is a contour of H, so that $\nabla H=$ $\left\langle 3 y-3 x^{2}, 3 x+2 y,-1\right\rangle$, and at $(4,2)$, we have $\nabla H(4,2)=\langle-42,16,-1\rangle$. Also acceptable is $\langle 42,-16,1\rangle$.
7. The point is $(4,2,-36)$ so we have $-42(x-4)+16(y-2)-(z+36)=0$.
8. The volume is $V(r, h)=\pi r^{2} h$, so therefore, $d V=2 \pi r h d r+\pi r^{2} d h$. Evaluating, we have $d V=$ $2 \pi(3)(8)(0.03)+\pi(3)^{2}(0.02)= \pm 5.089$ cubic meters.
9. $(1,2,-17)$ min, $(-1,2,-13)$ saddle, $(1,-2,15)$ saddle, $(-1,-2,19)$ max.
10. a)

$$
\begin{array}{lll}
f_{x}(A)=0 & f_{x}(B)=+ & f_{x}(E)=+ \\
f_{y}(A)=0 & f_{y}(B)=- & f_{y}(E)=-
\end{array}
$$

b) Min, about 45, max about 115
c)

$$
8
$$

Orthogonal to the contour, positive slope.
11. $\nabla f=\left\langle 6 x \cos \left(x^{2}-4 y\right),-12 \cos \left(x^{2}-4 y\right)\right\rangle$.
12. $\frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \rightarrow 10=(2)(4)+(1) \frac{\partial y}{\partial t} \rightarrow \frac{\partial y}{\partial t}=10-8=2$. Here, y and f are interchangeable.
13. Use polar bounds. The bounds are $0 \leq r \leq 1,0 \leq \theta \leq \frac{\pi}{2}$.

$$
\int_{0}^{\pi / 2} \int_{0}^{1} 2 e^{r^{2}} r d r d \theta=\int_{0}^{\pi / 2}\left[e^{r^{2}}\right]_{0}^{1} d \theta=\int_{0}^{\pi / 2}(e-1) d \theta=(e-1) \int_{0}^{\pi / 2} d \theta=\frac{(e-1) \pi}{2}
$$

14. $f_{x}(x, y)=4 x+y+4 \rightarrow f_{x}(-2,3)=-1$, and $f_{y}(x, y)=x-y^{3}-2 \rightarrow f_{y}(-2,3)=-31$. We also have $z_{0}=-31.25$. Thus, the equation of the tangent plane is $z+31.25=-(x+2)-$ $31(y-3)$. Thus,

$$
\begin{aligned}
z+31.25 & =-(-2.05+2)-31(3.1-3) \\
z+31.25 & =-(-0.05)-31(0.1) \\
z+31.25 & =0.05-3.1 \\
z+31.25 & =-3.05 \\
z & =-3.05-31.25 \\
z & =-34.3
\end{aligned}
$$

15. Do the inside integral first: $\int_{3}^{4} x(1-y) d y=\left(x y-\frac{1}{2} x y^{2}\right)_{3}^{4}=(4 x-8 x)-\left(3 x-\frac{9}{2} x\right)=-\frac{5}{2} x$. Now integrate with respect to x : $\int_{-1}^{2}\left(-\frac{5}{2} x\right) d x=\left(-\frac{5}{4} x^{2}\right)_{-1}^{2}=\left(-\frac{5}{4}(4)\right)-\left(-\frac{5}{4}(1)\right)=-\frac{15}{4}$.
16. $\int_{0}^{4} \int_{y / 2}^{6-y} x y d x d y$
17. The solid is a hemisphere of radius 1 , but it's being integrated over a quarter circle, so we have just $1 / 8$ of a sphere. The volume of a sphere of radius 1 is $\frac{4}{3} \pi(1)^{3}=\frac{4}{3} \pi$, then divided by 8 , we have $\frac{1}{6} \pi$.
18. The region of integration is a circle of radius 2 , so it's advised to use polar. Thus, r ranges between 0 and $2, \theta$ between 0 and 2π. The integrand is $\left(4-r^{2}\right) r$, where the extra r is from the Jacobian. Thus, we have $\int_{0}^{2 \pi} \int_{0}^{2}\left(4 r-r^{3}\right) d r d \theta$. The inner integral works out to be 4 , the out to be 2π, so the volume is 8π.
19. The region is the parabola $y=9-x^{2}$ above the x-axis, so we have $\int_{-3}^{3} \int_{0}^{9-x^{2}} d y d x$.
20. 36 .
