Line Integrals Practice

No answers are provided. If you want to discuss them, go to Piazza and post your work there for feedback. I want to encourage such discussions on Piazza.

You are given a vector field $\mathbf{F}(x, y)=\langle M(x, y), N(x, y)\rangle$ and a path in the $x y$-plane $C: r(t)=\langle x(t), y(t)\rangle$, where $a \leq t \leq b$. The following integrals,

$$
\int \mathbf{F} \cdot \mathbf{T} d s \quad \int \mathbf{F} \cdot d \mathbf{r} \quad \int M d x+N d y
$$

are all equivalent. They all describe a work-line integral.
Hints: Check to see if the vector field is a gradient field ... consider using Green's Theorem.

1. Find $\int \mathbf{F} \cdot \mathbf{T} d s$, where $\mathbf{F}(x, y)=\langle 3 x, 2 x y\rangle$ and C is a line segment from $(1,2)$ to $(4,7)$.
2. Find $\int \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=\left\langle x y^{2}, 2 x-y\right\rangle$ and C is a line segment from $(6,6)$ to $(3,0)$.
3. Find $\int M d x+N d y$, where $\mathbf{F}(x, y)=\left\langle x^{2}+2 y,-x\right\rangle$ and C is a line segment from $(-3,3)$ to $(5,1)$.
4. Find $\int \mathbf{F} \cdot \mathbf{T} d s$, where $\mathbf{F}(x, y)=\left\langle 6 y, x^{2}\right\rangle$ and C is the parabola $y=x^{2}$ from $(1,1)$ to $(4,16)$.
5. Find $\int M d x+N d y$, where $\mathbf{F}(x, y)=\left\langle 4, x^{2}+y\right\rangle$ and C is the cubic $y=x^{3}$ from $(-1,-1)$ to $(2,8)$.
6. Find $\int \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=\left\langle x^{3} y, 2\right\rangle$ and C is the curve $y=1-x^{2}$ from $(0,1)$ to $(2,-3)$.
7. Find $\int \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=\langle 3-x, 1+y\rangle$ and C is a circle of radius 2 , centered at the origin, traversed counterclockwise.
8. Find $\int M d x+N d y$, where $\mathbf{F}(x, y)=\langle 2 x y, 1+3 x\rangle$ and C is a line from $(1,2)$ to $(5,1)$, then to $(4,4)$.
9. Find $\int \mathbf{F} \cdot \mathbf{T} d s$, where $\mathbf{F}(x, y)=\left\langle 8 x y, 4 x^{2}\right\rangle$ and C is a sequence of line segments from $(0,0)$ to $(1,3)$ to $(4,7)$ to $(2,1)$.
10. Find $\int \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=\left\langle 2 x, 3 y^{2}\right\rangle$ and C is a quarter circle of radius 4 centered at the origin from $(4,0)$ to $(0,4)$.
11. Find $\int M d x+N d y$, where $\mathbf{F}(x, y)=\left\langle y+2 x y^{3}, x+3 x^{2} y^{2}\right\rangle$ and C is the curve $y=x^{3}+x^{2}-2 x+1$ from $(0,1)$ to $(1,1)$.
12. Find $\int \mathbf{F} \cdot \mathbf{T} d s$, where $\mathbf{F}(x, y)=\langle\cos y,-x \sin y\rangle$ and C is a circle of radius 7 , centered at $(5,1)$.
13. Find $\int \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=\langle 2 x, 4 x y\rangle$ and C is a triangle from $(0,0)$ to $(5,0)$ to $(5,5)$ back to $(0,0)$.
14. Find $\int M d x+N d y$, where $\mathbf{F}(x, y)=\langle 100 y, 101 x\rangle$ and C is a circle of radius 1 , centered at $(\pi, \sqrt{2})$.
15. Find $\int \mathbf{F} \cdot \mathbf{T} d s$, where $\mathbf{F}(x, y)=\left\langle 2 x, 80 y^{10}+3 x\right\rangle$ and C is the parabola $y=1-x^{2}$ traversed from $(1,0)$ to $(-1,0)$, then back to $(1,0)$ along the x-axis.
