Green's Theorem

Let $\mathbf{F}(x, y)=\langle M(x, y), N(x, y)\rangle$ be a vector field in R^{2} and assume functions M and N are twice differentiable.
Let C be a closed (starts and ends at the same point) and simple (does not cross itself) loop path in R^{2} that is traversed counterclockwise. Let D be the interior of C. (Equivalently, C is the boundary of D).

Green's Theorem:

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{D} N_{x}-M_{y} d A .
$$

This allows one to find the value of the line integral along path C by instead finding a double integral over the interior D .

Proof:

To the right is a closed simple loop path C traversed counterclockwise.
Treat C as the union of two paths, $y=g_{1}(x)$ which traverses from a to b, and $y=$ $g_{2}(x)$, which traverses from b to a.

Note that the parameterization of the path results in the form $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, so that
 the derivative is $d \mathbf{r}=\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$, or abbreviated $\langle d x, d y\rangle$.

The line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is equivalent to

$$
\int_{C}\langle M(x, y), N(x, y)\rangle \cdot\langle d x, d y\rangle=\int_{C} M(x, y) d x+N(x, y) d y .
$$

We'll look at $\int_{C} M(x, y) d x$:

$$
\begin{array}{rlr}
\int_{C} M(x, y) d x & =\int_{a}^{b} M\left(x, g_{1}(x)\right) d x+\int_{b}^{a} M\left(x, g_{2}(x)\right) d x \\
& =\int_{a}^{b} M\left(x, g_{1}(x)\right) d x-\int_{a}^{b} M\left(x, g_{2}(x)\right) d x & \begin{array}{c}
\text { Reversing the order } \\
\text { of integration }
\end{array} \\
& =-\left[\int_{a}^{b} M\left(x, g_{2}(x)\right) d x-M\left(x, g_{1}(x)\right) d x\right]
\end{array}
$$

The integrand in the last integral is a subtraction of two quantities. We can write this as an integral itself, using the trick that $p-q=\int_{q}^{p} d u$. In the above case, we have

$$
M\left(x, g_{2}(x)\right)-M\left(x, g_{1}(x)\right)=\int_{g_{1}(x)}^{g_{2}(x)} \frac{\partial M}{\partial y} d y
$$

Note that we develop an integrand in such a way that after antidifferentiation, we're left with the function $M(x, y)$. Also note that the expressions $g_{1}(x)$ and $g_{2}(x)$ are evaluated into the y-variable. Thus, we need the derivative of M with respect to y to be the integrand. To do this, we also must include a differential $d y$. Note that $d y$ and ∂y mean the same thing.

Thus, we have

$$
-\left[\int_{a}^{b} M\left(x, g_{2}(x)\right) d x-M\left(x, g_{1}(x)\right) d x\right]=-\int_{a}^{b}\left(\int_{g_{1}(x)}^{g_{2}(x)} \frac{\partial M}{\partial y} d y\right) d x
$$

This last integral is simplified as

$$
-\iint_{D} M_{y} d A .
$$

We have shown that

$$
\int_{C} M(x, y) d x=-\iint_{D} M_{y} d A
$$

A similar construction shows that

$$
\int_{C} N(x, y) d y=\iint_{D} N_{x} d A
$$

Combined, we have

$$
\begin{aligned}
\int_{C} M(x, y) d x+N(x, y) d y & =\iint_{D} N_{x} d A .-\iint_{D} M_{y} d A \\
& =\iint_{D}\left(N_{x}-M_{y}\right) d A .
\end{aligned}
$$

