Math 267

Flux Integrals Practice

The form $\iint_{C} \mathbf{F} \cdot \mathbf{n} d S$ represents the flow (flux) of a vector field \mathbf{F} through a surface C. Vector \mathbf{n} is a normal to the surface. In the set-up, it is a unit vector, but in practice, that parts "cancels out" so that \mathbf{n} does not have to remain a unit vector. However, it is important to get the right orientation of \mathbf{n}, and not some inadvertent multiple of it. Please review my notes (typed and written) for more details in finding \mathbf{n} and setting up a flux integral. Also, remember that the divergence theorem can be used when C is a surface enclosing a simply-connected subregion of R^{3}.

Rules: there are no answers here. You are encouraged to share your answers on Piazza!
Preliminary (surface area, surface integrals)

1. Find the area of $x+y+4 z=12$ in the first octant.
2. Find the area of $z=\sqrt{x^{2}+y^{2}}$ such that $x^{2}+y^{2} \leq 4$.
3. Find the area of $z=16-x^{2}-y^{2}$ that lies above the $x y$-plane.
4. Find the area of $z=\sqrt{25-x^{2}-y^{2}}$ that lies above the $x y$-plane.
5. Find $\iint_{C}(x+2 y-z) d s$ where C is the plane $2 x+y+3 z=12$ in the first octant.

Flux integrals:

1. Find $\iint_{C} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=\langle x, 2 x+y, 2 z\rangle$ and C is the portion of the plane $x+3 y+2 z=6$ in the first octant. Assume positive flow is in the positive z direction.
2. Find $\iint_{C} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=\langle x, 2 x+y, 2 z\rangle$ and C is the portion of the plane $x+3 y+2 z=6$ in the first octant. Assume positive flow is in the positive x direction. (What do you notice happened with your answers in \#1 and \#2?)
3. Find $\iint_{C} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=\left\langle x^{2}, 1,2-y\right\rangle$ and C is the paraboloid $z=1-x^{2}-y^{2}$ above the $x y$-plane. Assume positive flow is in the positive z direction.

In problems 4-9, let solid S be a tetrahedron in R^{3} that has vertices $(0,0,0),(0,0,4),(0,3,0)$ and $(2,0,0)$.
4. Find $\iint_{C} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=\langle 2 x, y,-z\rangle$ and C is the face of S with vertices $(0,0,4),(0,3,0)$ and $(2,0,0)$. Assume positive flow is in the positive z direction.
5. Find $\iint_{C} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=\langle 2 x, y,-z\rangle$ and C is the face of S on the $x y$-plane. Assume positive flow is in the negative z-direction.
6. Find $\iint_{C} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=\langle 2 x, y,-z\rangle$ and C is the face of S on the $y z$-plane. Assume positive flow is in the negative x-direction.
7. Find $\iint_{C} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=\langle 2 x, y,-z\rangle$ and C is the face of S on the $x z$-plane. Assume positive flow is in the negative y-direction.
8. Sum your results in Problems 4-7.
9. Now, use the divergence theorem to find $\iint_{C} \mathbf{F} \cdot \mathbf{n} d S$ where $F(x, y, z)=\langle 2 x, y,-z\rangle$ and C is the surface of S, positive orientation away from the interior of S.
10. Find $\iint_{C} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=\langle 2 x, 5 z,-3 y\rangle$ and C is a sphere with radius 5 , centered at the origin.
11. Find $\iint_{C} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=\langle 5 z, 100 x,-7 y\rangle$ and C is a tetrahedron with vertices $(0,1,2),(3,4,5),(6,7,8)$, and ($9,10,11$). Hint: it's easy.
12. You are given that $\mathbf{F}(x, y, z)=\left\langle 9 y^{2}, e^{2 x}+z,-3 \sqrt{y}\right\rangle$ and have determine the flux through three sides of a four sided object to be 19 through side $1, \pi$ through side 2 , and $\sqrt{17}$ through side 3 . What is the flux through side 4 ?

