
Let 𝐫(𝑡) and 𝐬(𝑡) be two differentiable vector-valued functions in 𝑅3. There is a useful property: 

 

 Derivative of the dot product:  
𝑑

𝑑𝑡
[𝐫(𝑡) ⋅ 𝐬(𝑡)] =

𝑑

𝑑𝑡
𝐫(𝑡) ⋅ 𝐬(𝑡) + 𝐫(𝑡) ⋅

𝑑

𝑑𝑡
𝐬(𝑡). 

 

Note that it appears similar to the product rule of differentiation. 

 

Theorem:  If |𝐫(𝑡)| is constant for all t, then 𝐫(𝑡) and 𝐫′(𝑡) are orthogonal. 

 

Proof: Assume that |𝐫(𝑡)| = 𝑐.  

 

Then square both sides:   |𝐫(𝑡)|2 = 𝑐2. 
 

Recall that |𝐫(𝑡)|2 =  𝐫(𝑡) ⋅ 𝐫(𝑡):  𝐫(𝑡) ⋅ 𝐫(𝑡) = 𝑐2. 
 

Now, differentiate both sides: 

 

𝑑

𝑑𝑡
[𝐫(𝑡) ⋅ 𝐫(𝑡)] =

𝑑

𝑑𝑡
[𝑐2] 

𝑑

𝑑𝑡
𝐫(𝑡) ⋅ 𝐫(𝑡) + 𝐫(𝑡) ⋅

𝑑

𝑑𝑡
𝐫(𝑡) = 0 

𝐫′(𝑡) ⋅ 𝐫(𝑡) + 𝐫(𝑡) ⋅ 𝐫′(𝑡) = 0 

2𝐫(𝑡) ⋅ 𝐫′(𝑡) = 0 

𝐫(𝑡) ⋅ 𝐫′(𝑡) = 0. 

 

In 𝑅2, the only paths for which |𝐫(𝑡)| is constant are circular paths. However, in higher dimensions, these paths 

may not look circular. For example, in 𝑅3, a path where |𝐫(𝑡)| is constant would look like any path drawn on a 

sphere. The path itself may be a bunch of squiggles, but it would be embedded on a sphere of constant radius. 

 

Unit Tangent and Unit Normal vectors. 

 

Given 𝐫(𝑡), we define the unit tangent vector to be  

 

𝐓(𝑡) =
𝐫′(𝑡)

|𝐫′(𝑡)|
. 

 

Now, consider its derivative, 𝐓′(𝑡).  Since 𝐓(𝑡) is a unit vector, |𝐓(𝑡)| = 1 (a constant), and thus it meets the 

condition for the theorem. This means that 𝐓(𝑡) and 𝐓′(𝑡) are orthogonal:  𝐓(𝑡) ⋅ 𝐓′(𝑡) = 0. However, even 

though 𝐓(𝑡) is a unit vector, its derivative usually is not. Thus, we define the unit normal to be  

 

𝐍(𝑡) =
𝐓′(𝑡)

|𝐓′(𝑡)|
. 

 

Since 𝐓(𝑡) and 𝐓′(𝑡) are orthogonal, then so are 𝐓(𝑡) and 𝐍(𝑡).  Unit normal N always points into the curve of a 

path, whereas T points in the direction of travel. 

 

 

 



Arc Length 

 

The length of the path traced out by 𝐫(𝑡) is given by  

 

𝑠 = ∫ |𝐫′(𝑡)| 𝑑𝑡
𝑏

𝑎

. 

 

Letter s is often used for arc length. If a and b are constants, then the definite integral above is a constant. However, 

we can make arc length s into a function of t. We let t be the upper bound and use a dummy variable u within the 

integral: 

 

𝑠(𝑡) = ∫ |𝐫′(𝑢)| 𝑑𝑢
𝑡

𝑎

. 

 

Differentiating both sides with respect to t and using the Fundamental Theorem of Calculus, we have 

 

𝑑

𝑑𝑡
𝑠(𝑡) = |𝐫′(𝑡)|,          or equivalently,          𝑑𝑠 = |𝐫′(𝑡)| 𝑑𝑡. 

 

The dt and ds Segmentations of a Path 

 

When defining a path using parameter variable t, the path usually does not subdivide into subsegments of equal 

length. For example, 𝐫(𝑡) = 〈𝑡, 𝑡2〉 traces out the common parabola. Note that when t = 0, the path is a point (0,0), 

and when t = 1, the path is at point (1,1) and when t = 2, the path is at point (2,4). The segment from (0,0) to (1,1) 

is obviously shorter than the path from (1,1) to (2,4). A particle moving along this path will need to speed up as t 

increases. We call this the dt segmentation. 

 

In many applications, we prefer the tangent vector remain the same length. This removes the variable of speed 

from the problem (essentially, one less thing to worry about). The easiest way to do this is to use the unit tangent, 

𝐓(𝑡). Using the parabola example, this would be 

 

𝐓(𝑡) = 〈
1

√1 + 4𝑡2
,

2𝑡

√1 + 4𝑡2
〉. 

 

The important thing to note is that while T now has constant length 1, the little segments of the parabola will not 

necessarily be of length 1. But they will be constant, because a particle moving along the path moves at a constant 

speed. This is called the ds segmentation. It is usually not important to know the length of these little segments, 

but that they’re constant. 

 

In later applications, we set up a problem by assuming an equal segmentation of a path, which is easy to declare 

but difficult to do algebraically. We then use the formula 𝑑𝑠 = |𝐫′(𝑡)| 𝑑𝑡 to convert back into the “easier” dt 

segmentation. Thus, the ds segmentation is used for the set-up, but the actual solutions will come via the dt 

segmentation, where strategic substitutions have been made along the way. 


