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36. Double Integration over 

Non-Rectangular Regions of Type II 
 

When establishing the bounds of a double integral, visualize an arrow initially in the positive x 

direction or the positive y direction. A region of Type II is one in which there may be ambiguity 

as to where this arrow enters or exits the region. In such cases, more than one double integral will 

be required. It is possible that a region may be Type II in one ordering of integration, but Type I 

in another ordering. 

 

Example 36.1: Rewrite the following integral expression  

 

∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
𝑥2

0

𝑑𝑥
2

0

+ ∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
6−𝑥

0

𝑑𝑥
6

2

 

 

in the dx dy order of integration. 

 

Solution: Let’s look at one double integral at a time. We start with the first, 

 

∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
𝑥2

0

𝑑𝑥
2

0

. 

 

It may be helpful to write in equations for each bound: 

 

∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
𝑦=𝑥2

𝑦=0

𝑑𝑥
𝑥=2

𝑥=0

. 

 

The bounds of the inner integral suggests a region with a lower bound of 𝑦 = 0 (the x-axis), and 

an upper bound of 𝑦 = 𝑥2. Then, the bounds of the outer integral suggest that x must be contained 

in the interval 0 ≤ 𝑥 ≤ 2. We obtain the following region: 
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Now, we examine the second double integral, where the bounds have been written as equations: 

 

∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
𝑦=6−𝑥

𝑦=0

𝑑𝑥
𝑥=6

𝑥=2

 

 

This suggests a region bounded below by 𝑦 = 0 (the x-axis) and above by the line 𝑦 = 6 − 𝑥, then 

the bounds of the outer integral suggest that 2 ≤ 𝑥 ≤ 6. This region is sketched alongside the one 

already sketched. All vertex or extreme points are also noted: 

 

 
 

In the dy dx ordering of integration, this is a Type II region. An arrow drawn in the positive y-

direction enters the region at the x-axis (y = 0), but may exit through the parabola 𝑦 = 𝑥2 or the 

line 𝑦 = 6 − 𝑥. This ambiguity is why this region is considered Type II in the dy dx ordering, and 

why two double integrals are necessary to describe the region properly. 

 

If the order of integration is reversed to 𝑑𝑥 𝑑𝑦, then there is no ambiguity as to where an arrow 

drawn in the positive x-direction would enter and exit the region. The same region is drawn below, 

but now the boundaries are stated with variable x isolated: 

 

 
 

An arrow drawn in the positive x direction enters the region at 𝑥 = √𝑦 and exits at 𝑥 = 6 − 𝑦.  

The bounds for y are 0 to 4. In this ordering, the region is Type I, and one double integral is 

sufficient to describe this region: 

 

∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑥
6−𝑦

√𝑦

𝑑𝑦
4

0

. 
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Example 36.2: Set up a double integral over region R that is outside a circle of radius 2 centered 

at the origin, inside a circle of radius 5 centered at the origin, such that y is non-negative. Use the 

𝑑𝑦 𝑑𝑥 ordering and use 𝑓(𝑥, 𝑦) as the integrand. 

 

Solution: A sketch shows that this region has the following appearance, and is Type II. Vertical 

lines are placed where R is split into smaller Type I regions, labeled A, B and C, reading left to 

right:  

 

 
 

For region A, we have 

∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
√25−𝑥2

0

 𝑑𝑥
−2

−5

. 

 

For region B, we have  

∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
√25−𝑥2

√4−𝑥2

 𝑑𝑥
2

−2

. 

 

For region C, we have 

∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
√25−𝑥2

0

 𝑑𝑥
5

2

. 

 

Summing, we have  

 

∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
√25−𝑥2

0

𝑑𝑥
−2

−5

+ ∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
√25−𝑥2

√4−𝑥2

𝑑𝑥
2

−2

+ ∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
√25−𝑥2

0

𝑑𝑥
5

2

. 

 

Regions that are formed by circles are usually better solved using polar and cylindrical coordinates, 

which are discussed later. 
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Example 36.3: Reverse the order of integration: 

 

∫ ∫ 𝑔(𝑥, 𝑦) 𝑑𝑦
3𝑥+4

𝑥2

𝑑𝑥
4

−1

. 

 

Solution: The region is shown below. In the 𝑑𝑦 𝑑𝑥 ordering of integration, it is Type I (at left). 

 

 
 

However, as a 𝑑𝑥 𝑑𝑦 ordering of integration, an arrow drawn in the positive x direction may enter 

the region through the line 𝑥 =
𝑦−4

3
 (assuming 1 < 𝑦 ≤ 16) or through the curve 𝑥 = −√𝑦 

(assuming 0 ≤ 𝑦 < 1). Because of the ambiguity as to where such an arrow could enter the region, 

this is a Type II region.  

 

We split the region at 𝑦 = 1, forming two smaller Type I regions, as shown above right, with the 

bounding curves now written with x isolated. Thus, in the 𝑑𝑥 𝑑𝑦 ordering of integration, we have 

 

∫ ∫ 𝑔(𝑥, 𝑦) 𝑑𝑥
√𝑦

−√𝑦

𝑑𝑦
1

0

+ ∫ ∫ 𝑔(𝑥, 𝑦) 𝑑𝑥
√𝑦

(𝑦−4) 3⁄

𝑑𝑦
16

1

. 

 

           
 

 

 

 

 
See an error? Have a suggestion? 

Please see www.surgent.net/vcbook  

 

  

http://www.surgent.net/vcbook
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37. Double Integration in Polar Coordinates 
 

Regions that are formed by circles are better described using polar coordinates. If (𝑟, 𝜃) represents 

a point in the plane, then 𝑟 is the distance from the point to the origin, and 𝜃 represents the angle 

that a ray from the origin to the point makes with the positive x-axis. The usual conversion formulas 

between rectangular (𝑥, 𝑦) coordinates to polar (𝑟, 𝜃) coordinates are: 

 

(𝑥, 𝑦) to (𝑟, 𝜃):   {
𝑟2 = 𝑥2 + 𝑦2

𝜃 = arctan (
𝑦

𝑥
)

               (𝑟, 𝜃) to (𝑥, 𝑦):  {
𝑥 = 𝑟 cos 𝜃
𝑦 = 𝑟 sin 𝜃

. 

 

Circular regions (or portions thereof) in the xy-plane can be described using polar coordinates 

where 𝑎 ≤ 𝑟 ≤ 𝑏 and 𝑐 ≤ 𝜃 ≤ 𝑑, and 𝑎, 𝑏, 𝑐 and 𝑑 are constants. Such regions are called polar 

rectangles. 

 

To establish bounds for 𝑟, visualize an arrow that starts at the origin and extends outward. The 

value of 𝑟 at which the arrow enters the region is the lower bound 𝑎, and the value of 𝑟 at which 

this arrow exits the region is the upper bound 𝑏. If the region includes the origin, then the lower 

bound for 𝑟 is 0. Since 𝑟 is a radius, it is never negative. 

 

To establish bounds for 𝜃, visualize a ray attached at the origin that “sweeps” through the region 

in a counterclockwise manner. The angle at which 𝜃 enters the region is the lower bound 𝑐, and 

the value at which 𝜃 exits the region is the upper bound 𝑑. The “sweep” must always be done in a 

counterclockwise manner, so it may be necessary to allow 𝜃 to be negative in order to preserve the 

ordering of the values 𝑐 and 𝑑. 

 

           
 

Example 37.1: Describe the following regions using polar coordinates. 

 

 
 

Solution:  

 

(a) The point (4,0) in rectangular coordinates suggests that this circle has a radius of 4. Since 

the region includes the origin, we have a lower bound of 𝑟 = 0, and since the circle has 

radius 4, we have an upper bound of 𝑟 = 4. Thus, the interval for 𝑟 is 0 ≤ 𝑟 ≤ 4. Since 

this is an entire circle, we have the interval for 𝜃 as 0 ≤ 𝜃 ≤ 2𝜋. 
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(b) The point (4,7) in rectangular coordinates allows us to determine the radius, which is 𝑟 =

√42 + 72 = √65. The region includes the origin. Thus, 0 ≤ 𝑟 ≤ √65. Meanwhile, this 

semicircle is swept by a ray that would start at the negative y-axis and sweep 

counterclockwise to the positive y-axis. Thus, the interval for 𝜃 is  −
𝜋

2
≤ 𝜃 ≤

𝜋

2
 . 

 

(c) The point (3, 3√3) in rectangular coordinates allows us to find the radius, which is 𝑟 =

√32 + (3√3)
2

= √9 + 27 = √36 = 6. Since the region also contains the origin, we have 

0 ≤ 𝑟 ≤ 6. The region is swept by a ray that starts at the positive x-axis, so 𝜃 = 0. To find 

the upper bound for 𝜃, observe that the point (3, 3√3) lies on this ray. Since 𝑥 = 3 and 

𝑦 = 3√3, we have 𝜃 = arctan (
3√3

3
) = arctan √3 =

𝜋

3
 radians. Thus, 0 ≤ 𝜃 ≤

𝜋

3
. 

 

           
 

Integration in Polar Coordinates: The standard form for integration in polar coordinates is 

 

∫ ∫ 𝑓(𝑟 cos 𝜃 , 𝑟 sin 𝜃)
𝑏

𝑎

 𝑟 𝑑𝑟 𝑑𝜃
𝑑

𝑐

, 

 

where 𝑎 ≤ 𝑟 ≤ 𝑏 and 𝑐 ≤ 𝜃 ≤ 𝑑. The area element is 𝑟 𝑑𝑟 𝑑𝜃, the 𝑟 being the Jacobian of 

integration. 

 

Example 37.2: Evaluate  

 

∫ ∫ 𝑥𝑦 𝑑𝑦
√9−𝑥2

0

𝑑𝑥
3

0

. 

 

Solution: A sketch of the region of integration shows it to be a quarter circle in the first quadrant, 

centered at the origin, with radius 3.  

 

 
 

This integral is better solved using polar coordinates. The bounds of integration are 0 ≤ 𝑟 ≤ 3 and 

0 ≤ 𝜃 ≤
𝜋

2
. Furthermore, we substitute 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃, and exchange 𝑑𝑦 𝑑𝑥 with 

𝑟 𝑑𝑟 𝑑𝜃: 

 

∫ ∫ 𝑥𝑦 𝑑𝑦
√9−𝑥2

0

𝑑𝑥
3

0

= ∫ ∫ (𝑟 cos 𝜃)(𝑟 sin 𝜃) 𝑟 𝑑𝑟 𝑑𝜃
3

0

𝜋 2⁄

0

= ∫ ∫ 𝑟3 cos 𝜃 sin 𝜃  𝑑𝑟
3

0

𝑑𝜃
𝜋 2⁄

0

. 
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The inside integral is evaluated first: 

 

∫ 𝑟3 cos 𝜃 sin 𝜃  𝑑𝑟
3

0

= cos 𝜃 sin 𝜃 [
1

4
𝑟4]

0

3

 

=
81

4
cos 𝜃 sin 𝜃. 

 

This is then integrated with respect to 𝜃, using u-du substitution, with 𝑢 = sin 𝜃 and 𝑑𝑢 = cos 𝜃: 

 

81

4
∫ cos 𝜃 sin 𝜃  𝑑𝜃

𝜋 2⁄

0

= [
81

8
sin2 𝜃]

0

𝜋 2⁄

 

=
81

8
[12 − 0] 

=
81

8
 . 

 

           
 

Example 37.3: Evaluate 

 

∫ ∫ 𝑥2 𝑑𝑦
√25−𝑥2

0

𝑑𝑥
−2

−5

+ ∫ ∫ 𝑥2 𝑑𝑦
√25−𝑥2

√4−𝑥2

𝑑𝑥
2

−2

+ ∫ ∫ 𝑥2 𝑑𝑦
√25−𝑥2

0

𝑑𝑥
5

2

. 

 

Solution: The region of integration as suggested by the bounds in the three integrals is shown 

below (See Example 36.2): 

 

 
 

This region is better described using polar coordinates, where 2 ≤ 𝑟 ≤ 5 and 0 ≤ 𝜃 ≤ 𝜋. Replace 

the integrand 𝑥2 with (𝑟 cos 𝜃)2 = 𝑟2 cos2 𝜃, and the area element 𝑑𝑦 𝑑𝑥 with 𝑟 𝑑𝑟 𝑑𝜃. In doing 

so, the three double integrals above, in rectangular coordinates, are equivalent to one double 

integral, in polar coordinates, with constant bounds: 

 

∫ ∫ 𝑟2 cos2 𝜃 
5

2

𝑟 𝑑𝑟 𝑑𝜃
𝜋

0

, which simplifies to      ∫ ∫ 𝑟3 cos2 𝜃  𝑑𝑟
5

2

𝑑𝜃
𝜋

0

. 
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The inside integral is evaluated first: 

 

∫ 𝑟3 cos2 𝜃  𝑑𝑟
5

2

= cos2 𝜃 [
1

4
𝑟4]

2

5

 

=
1

4
cos2 𝜃 [(5)4 − (2)4] 

=
609

4
cos2 𝜃. 

 

This expression is then integrated with respect to 𝜃. To antidifferentiate cos2 𝜃, use the identity 

cos2 𝜃 =
1

2
(1 + cos 2𝜃): 

 

∫
609

4
cos2 𝜃 𝑑𝜃

𝜋

0

=
609

4
∫ (

1

2
(1 + cos 2𝜃)) 𝑑𝜃

𝜋

0

 

=
609

8
∫ 1 + cos 2𝜃  𝑑𝜃

𝜋

0

 

=
609

8
[𝜃 +

1

2
sin 2𝜃]

0

𝜋

 

=
609

8
[(𝜋 +

1

2
sin 2(𝜋)) − (0 +

1

2
sin 2(0))] 

=
609

8
𝜋 . 

 

In this example, it is clearly faster and preferable to integrate using polar coordinates rather than 

perform three double integrals using rectangular coordinates (and probable trigonometric 

substitutions along the way).  
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Example 37.4: Evaluate  

 

∬
1

(1 + 𝑥2 + 𝑦2)2
 𝑑𝐴

𝑅

, 

 

where R is the region in the xy-plane outside the circle of radius 1 centered at the origin. 

 

Solution: Below is a sketch of the region of integration R.  

 

 
 

An arrow drawn from the origin outward enters region R when 𝑟 = 1. Since the region extends 

forever, use ∞ as the upper bound for 𝑟. Thus, 1 ≤ 𝑟 < ∞. The bounds for 𝜃 are 0 ≤ 𝜃 ≤ 2𝜋. 

 

The double integral, using polar coordinates, is 

 

∫ ∫
1

(1 + 𝑟2)2
 𝑟 𝑑𝑟

∞

1

 𝑑𝜃
2𝜋

0

. 

 

The inside integral is evaluated using u-du substitution, where 𝑢 = 1 + 𝑟2 and 𝑑𝑢 = 2𝑟 𝑑𝑟. We 

have 

 

∫
1

(1 + 𝑟2)2
 𝑟 𝑑𝑟

∞

1

= lim
𝑑→∞

∫
𝑟

(1 + 𝑟2)2
 𝑑𝑟

𝑑

1

 

= lim
𝑑→∞

[
1

2
∫

1

(1 + 𝑟2)2
 2𝑟 𝑑𝑟

𝑑

1

] 

=
1

2
lim

𝑑→∞
[−

1

1 + 𝑟2
]

1

𝑑

 

=
1

2
lim

𝑑→∞
[(−

1

1 + (𝑑)2
) − (−

1

1 + (1)2
)] 

=
1

2
[0 − (−

1

2
)] =

1

4
 . 
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The integral with respect to 𝜃 is now evaluated: 

 

1

4
∫  𝑑𝜃

2𝜋

0

=
1

4
[𝜃]0

2𝜋 =
2𝜋

4
=

𝜋

2
 . 

 

           
 

Example 37.5: Find the volume of the ellipsoid  𝑥2 +
1

9
𝑦2 + 𝑧2 = 1. 

 

Solution: We must decide which variable should be isolated. Note that solving for y yields 

 

𝑦 = ±3√1 − 𝑥2 − 𝑧2 . 
 

Furthermore, when 𝑦 = 0, then the ellipsoid forms a circle, 𝑥2 + 𝑧2 = 1, on the xz-plane. We will 

integrate 𝑦 = 𝑓(𝑥, 𝑧) over a region of integration R that is the disk 𝑥2 + 𝑧2 ≤ 1. In rectangular 

coordinates, we have the double integral 

 

∫ ∫ (3√1 − 𝑥2 − 𝑧2 − (−3√1 − 𝑥2 − 𝑧2))
√1−𝑥2

−√1−𝑥2

 𝑑𝑧
1

−1

 𝑑𝑥. 

 

This looks challenging, so instead, we use polar coordinates in place of variables x and z. Region 

R is now defined by 0 ≤ 𝑟 ≤ 1 and 0 ≤ 𝜃 ≤ 2𝜋, and the integrand is now written 𝑦 = ±3√1 − 𝑟2.  

The double integral in polar coordinates is now 

 

∫ ∫ (3√1 − 𝑟2 − (−3√1 − 𝑟2))
1

0

2𝜋

0

 𝑟 𝑑𝑟 𝑑𝜃. 

 

This simplifies to 

 

6 ∫ ∫ √1 − 𝑟2
1

0

2𝜋

0

 𝑟 𝑑𝑟 𝑑𝜃. 

 

Note: It is also possible to use symmetry to set up the integral, noting that the volume between the 

xz-plane and 𝑦 = 3√1 − 𝑟2 is the same as the volume between the xz-plane and 𝑦 = −3√1 − 𝑟2. 

Thus, we could use 3√1 − 𝑟2 as the integrand, and double the result. Either way, the √1 − 𝑟2 

remains in the integrand, the 3 moves to the front and is doubled, so that we arrive at the same 

integral as above. 
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The inside integral is evaluated using u-du substitution, with 𝑢 = 1 − 𝑟2 and 𝑑𝑢 = −2𝑟 𝑑𝑟: 

 

∫ √1 − 𝑟2
1

0

 𝑟 𝑑𝑟 = [−
1

3
(1 − 𝑟2)3 2⁄ ]

0

1

 

= 0 − (−
1

3
) 

=
1

3
 . 

 

This is then integrated with respect to 𝜃: 

 

6 ∫ (
1

3
)

2𝜋

0

𝑑𝜃 = 2 ∫ 𝑑𝜃
2𝜋

0

= 4𝜋. 

 

           
 

Example 37.6: Find the volume of the solid bounded by 𝑧 = 2𝑥2 + 2𝑦2 and 𝑧 = 9 − 2𝑥2 − 2𝑦2.  

 

Solution: Setting the two functions equal, we have 

 

2𝑥2 + 2𝑦2 = 9 − 2𝑥2 − 2𝑦2 

4𝑥2 + 4𝑦2 = 9 

𝑥2 + 𝑦2 =
9

4
 . 

 

Thus, the region of integration is the disk 𝑥2 + 𝑦2 ≤
9

4
, which can be described in polar coordinates 

as 0 ≤ 𝑟 ≤
3

2
 and 0 ≤ 𝜃 ≤ 2𝜋. Below is a sketch of the solid along with the region of integration: 
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The integrand is the “top” boundary (𝑧 = 9 − 2𝑥2 − 2𝑦2) subtracted by the “bottom” boundary 

(𝑧 = 2𝑥2 + 2𝑦2). This is 

 

9 − 2𝑥2 − 2𝑦2 − (2𝑥2 + 2𝑦2) = 9 − 4𝑥2 − 4𝑦2 

= 9 − 4(𝑥2 + 𝑦2) 

= 9 − 4𝑟2. 
 

The volume is found by evaluating 

 

∫ ∫ (9 − 4𝑟2) 𝑟 𝑑𝑟 𝑑𝜃
3 2⁄

0

2𝜋

0

, or simplified as:        ∫ ∫ (9𝑟 − 4𝑟3) 𝑑𝑟 𝑑𝜃
3 2⁄

0

2𝜋

0

. 

 

For the inner integral, we have 

 

∫ (9𝑟 − 4𝑟3) 𝑑𝑟
3 2⁄

0

= [
9

2
𝑟2 − 𝑟4]

0

3 2⁄

 

=
9

2
(

3

2
)

2

− (
3

2
)

4

− 0 

=
243

16
. 

 

Finally, the volume is 

 

∫
243

16
 𝑑𝜃

2𝜋

0

=
243

16
∫ 𝑑𝜃

2𝜋

0

 

=
243

16
(2𝜋) 

=
243𝜋

8
 units3. 
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Example 37.7: A sphere of radius 10 is intersected by a circular cylinder of radius 6 such that the 

cylinder and the sphere share a common axis of symmetry (that is, the cylinder’s axis of symmetry 

intersects the sphere through one of the sphere’s diameters). Find the volume of the outer ring-

shaped solid, which consists of the material inside the sphere but outside of the cylinder. 

 

Solution: Centering everything at the origin and using the z-axis as the line of symmetry, we can 

define the sphere as 𝑥2 + 𝑦2 + 𝑧2 = 100, or 𝑧 = √100 − 𝑥2 − 𝑦2. The sphere intersects the xy-

plane and creates a disk 𝑥2 + 𝑦2 ≤ 100, but the cylinder then removes the inner portion, 

everything inside a circle of radius 6. Thus, using polar coordinates, the bounds are 6 ≤ 𝑟 ≤ 10 

and 0 ≤ 𝜃 ≤ 2𝜋. The integrand is 𝑧 = √100 − 𝑥2 − 𝑦2 = √100 − 𝑟2. The volume of this solid 

is given by 

 

2 ∫ ∫ √100 − 𝑟2
10

6

 𝑟 𝑑𝑟
2𝜋

0

𝑑𝜃. 

 

The leading 2 represents the fact that the integral, as shown, will determine the volume between 

the sphere’s surface and the xy-plane. We need to double the result to find the entire solid’s volume. 

 

The inside integral is evaluated:   

 

∫ √100 − 𝑟2
10

6

 𝑟 𝑑𝑟 = [−
1

3
(100 − 𝑟2)3 2⁄ ]

6

10

 

= (−
1

3
(100 − (10)2)3 2⁄ ) − (−

1

3
(100 − (6)2)3 2⁄ ) 

= (−
1

3
(100 − 100)3 2⁄ ) − (−

1

3
(100 − 36)3 2⁄ ) 

= 0 − (−
1

3
(64)3 2⁄ ) 

=
512

3
 . 

 

Then, the outer integral is evaluated. We have 

 

2 ∫
512

3

2𝜋

0

𝑑𝜃 =
1024

3
(2𝜋) 

=
2048𝜋

3
 units3. 
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Example 37.8: Find the area inside a circle or radius 1 centered at the origin, to the right of the 

vertical line 𝑥 =
1

2
. 

 

Solution: The region is shown below: 

 

 
 

The circle’s equation is 𝑥2 + 𝑦2 = 1, or 𝑦 = ±√1 − 𝑥2. Using a single integral, the shaded area 

is given by 

 

2 ∫ √1 − 𝑥2
1

1 2⁄

 𝑑𝑥. 

 

However, this integral requires a trigonometric substitution. Instead, we try a different approach, 

using a double integral in polar coordinates. The boundaries are redefined: the circle is 𝑟 = 1, and 

for the line 𝑥 =
1

2
, and using the substitution 𝑥 = 𝑟 cos 𝜃, we have 𝑟 cos 𝜃 =

1

2
, or 𝑟 =

1

2 cos 𝜃
. 

Setting the two equations equal, we solve to determine the bounds for 𝜃: 

 

1 =
1

2 cos 𝜃
      so that     cos 𝜃 =

1

2
.     Thus,     𝜃 = ± arccos (

1

2
). 

 

Since the region is symmetric with the positive x-axis, we use 0 as a lower bound for 𝜃 and add a 

leading factor of 2 to the integral to double the result. Thus, the bounds are 0 ≤ 𝜃 ≤ arccos (
1

2
). 

 

Visualizing an arrow drawn outward from the origin, it enters the region at the line 𝑟 =
1

2 cos 𝜃
, and 

exits at the circle 𝑟 = 1, so the bounds for 𝑟 are 
1

2 cos 𝜃
≤ 𝑟 ≤ 1. Since this is an area integral, we 

use a 1 for the integrand. However, recall that in polar coordinates, the Jacobian 𝑟 will also be 

present in the integrand. 

 

2 ∫ ∫ 1 𝑟 𝑑𝑟 𝑑𝜃.
1

1 (2 cos 𝜃)⁄

arccos(1 2⁄ )

0
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The inside integral is evaluated: 

 

∫ 𝑟 𝑑𝑟
1

1 (2 cos 𝜃)⁄

= [
1

2
𝑟2]

1 (2 cos 𝜃)⁄

1

 

=
1

2
(12 − (

1

2 cos 𝜃
)

2

) 

=
1

2
(1 −

1

4
sec2 𝜃). 

 

Recall that ∫ sec2 𝑢  𝑑𝑢 = tan 𝑢 + 𝐶. Thus, we now integrate this expression with respect to 𝜃: 

 

2 ∫
1

2
(1 −

1

4
sec2 𝜃)  𝑑𝜃

arccos(1 2⁄ )

0

= ∫ (1 −
1

4
sec2 𝜃)  𝑑𝜃

arccos(1 2⁄ )

0

 

= [𝜃 −
1

4
tan 𝜃]

0

arccos(1 2⁄ )

 

= (arccos (
1

2
) −

1

4
tan (arccos (

1

2
))) − 0. 

 

The expression tan (arccos (
1

2
)) can be simplified. If 𝜃 = arccos (

1

2
), then this suggests a right 

triangle with hypotenuse of length 2, adjacent leg of length 1, and by Pythagoras’ Theorem, an 

opposite leg of length √3.  

 

 
 

Thus, we have tan 𝜃 =
opposite leg

adjacent leg
=

√3

1
= √3, so therefore, tan (arccos (

1

2
)) = √3. The area of 

the region is arccos (
1

2
) −

√3

4
, or about 0.614 units2. 

  

           
 


