Given two vectors, $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, the dot product is defined two ways:

$$
\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta \quad \text { and } \quad \mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}
$$

Both derive from the Law of Cosines.
The Law of Cosines relates the three sides of any triangle:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

This assumes angle θ is opposite side c.

Let \mathbf{u} and \mathbf{v} be two vectors and θ the angle formed when their feet are placed together. The difference vector $\mathbf{u}-\mathbf{v}$ "closes" off the triangle:

Then the Law of Cosines now reads

$$
|\mathbf{u}-\mathbf{v}|^{2}=|\mathbf{u}|^{2}+|\mathbf{v}|^{2}-2|\mathbf{u}||\mathbf{v}| \cos \theta
$$

Using the relationship of the dot product with magnitude, $\mathbf{u} \cdot \mathbf{u}=|\mathbf{u}|^{2}$, we have

$$
(\mathbf{u}-\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v})=\mathbf{u} \cdot \mathbf{u}+\mathbf{v} \cdot \mathbf{v}-2|\mathbf{u}||\mathbf{v}| \cos \theta
$$

Expanding the left side gives

$$
\mathbf{u} \cdot \mathbf{u}-2 \mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{u}+\mathbf{v} \cdot \mathbf{v}-2|\mathbf{u}||\mathbf{v}| \cos \theta
$$

Cancelling gives

$$
-2 \mathbf{u} \cdot \mathbf{v}=-2|\mathbf{u}||\mathbf{v}| \cos \theta
$$

Dividing by -2 gives the first form of the dot product

$$
\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta
$$

The second formula relies on the magnitude formula of a vector:

$$
|\mathbf{u}|=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}} \quad \text { so that } \quad|\mathbf{u}|^{2}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2} .
$$

The difference vector $\mathbf{u}-\mathbf{v}$ is the difference of the corresponding components:

$$
\mathbf{u}-\mathbf{v}=\left\langle u_{1}-v_{1}, u_{2}-v_{2}, u_{3}-v_{3}\right\rangle
$$

Thus, its magnitude-squared is

$$
|\mathbf{u}-\mathbf{v}|^{2}=\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\left(u_{3}-v_{3}\right)^{2}
$$

Expanded:

$$
|\mathbf{u}-\mathbf{v}|^{2}=u_{1}^{2}-2 u_{1} v_{1}+v_{1}^{2}+u_{2}^{2}-2 u_{2} v_{2}+v_{2}^{2}+u_{3}^{2}-2 u_{3} v_{3}+v_{3}^{2}
$$

Regrouping, we have

$$
|\mathbf{u}-\mathbf{v}|^{2}=\underbrace{\left(u_{1}^{2}+u_{3}^{2}+u_{3}^{2}\right)}_{|\mathbf{u}|^{2}}-2\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right)+\underbrace{\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)}_{|\mathbf{v}|^{2}}
$$

Going back to the formula

$$
|\mathbf{u}-\mathbf{v}|^{2}=|\mathbf{u}|^{2}+|\mathbf{v}|^{2}-2|\mathbf{u}||\mathbf{v}| \cos \theta
$$

We get

$$
\underbrace{\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)}_{|\mathbf{u}|^{2}}-2\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right)+\underbrace{\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)}_{|\mathbf{v}|^{2}}=|\mathbf{u}|^{2}+|\mathbf{v}|^{2}-2|\mathbf{u}||\mathbf{v}| \cos \theta
$$

Cancelling leaves

$$
-2\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right)=-2|\mathbf{u}||\mathbf{v}| \cos \theta
$$

Thus,

$$
u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}=|\mathbf{u}||\mathbf{v}| \cos \theta=\mathbf{u} \cdot \mathbf{v}
$$

