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29. Unconstrained Optimization 
 

Optimization is the process of determining the highest (maximal) and lowest (minimal) points on 

a graph. Maximum and minimum points are collectively called extreme points, or extrema.  

 

Let 𝑧 = 𝑓(𝑥, 𝑦) be a function in 𝑅3, and assume that 𝑓 exists and is continuous over the entire xy-

plane. That is, its domain is 𝑅2, there being no restrictions on variables x and y. 

 

A critical point (𝑥𝑐𝑦𝑐 , 𝑧𝑐), where 𝑧𝑐 = 𝑓(𝑥𝑐, 𝑦𝑐), is a point where 𝑓𝑥(𝑥𝑐, 𝑦𝑐) = 0 or does not exist, 

and where 𝑓𝑦(𝑥𝑐, 𝑦𝑐) = 0 or does not exist. These are the possible extreme points. All minimum 

and maximum points are local (or relative), meaning that the point is the lowest or highest point 

within some interval that includes the point. If it is the lowest or highest point over the entire 

domain, then the point is an absolute minimum or maximum. 

 

The second derivative test for 𝑅2 is one way to determine if a critical point (𝑥𝑐𝑦𝑐, 𝑧𝑐) is a minimum, 

a maximum, or neither. The formula is 

 

𝐷 = 𝑓𝑥𝑥(𝑥𝑐, 𝑦𝑐)𝑓𝑦𝑦(𝑥𝑐, 𝑦𝑐) − (𝑓𝑥𝑦(𝑥𝑐, 𝑦𝑐))
2

. 

 

 If 𝐷 > 0 and if 𝑓𝑥𝑥(𝑥𝑐, 𝑦𝑐) > 0, then the graph of 𝑓 is concave upward, and (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) is a 

relative minimum. 

 If 𝐷 > 0 and if 𝑓𝑥𝑥(𝑥𝑐 , 𝑦𝑐) < 0, then the graph of 𝑓 is concave downward, and (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) is a 

relative maximum. 

 If 𝐷 < 0, then (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) is not a minimum nor a maximum. It is a saddle point. 

 If 𝐷 = 0, then no conclusion about (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) can be inferred. Other methods may need to be 

used to classify the critical point. 

 

When 𝐷 > 0, this forces the signs of 𝑓𝑥𝑥(𝑥𝑐, 𝑦𝑐) and 𝑓𝑦𝑦(𝑥𝑐, 𝑦𝑐) to be the same. Thus, it is sufficient 

to note the sign of one, since the sign of the other will be the same. 

 

When there are no restrictions on the domain, this process is called unconstrained optimization. 

 

         
 

Example 29.1: Find the critical points of 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 6𝑥 − 4𝑦 + 2, and classify 

these points as minima, maxima or saddle. 

 

Solution: We find the first partial derivatives: 

 

𝑓𝑥(𝑥, 𝑦) = 2𝑥 + 6

𝑓𝑦(𝑥, 𝑦) = 2𝑦 − 4.
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Note that the derivatives (as well as the function itself) are defined for all x and all y in 𝑅2. Thus, 

there are no possible locations where the derivatives “do not exist”. We set the partial derivatives 

to 0, and solve: 

 
2𝑥 + 6 = 0
2𝑦 − 4 = 0

        which gives      
𝑥 = −3
𝑦 = 2.

 

 

Thus, we have one critical point, (−3,2, 𝑓(−3,2)), where 𝑓(−3,2) = −11. To classify this critical 

point, we use the second derivative test. The second derivatives are found first (recall that 

𝑓𝑥𝑦(𝑥, 𝑦) = 𝑓𝑦𝑥(𝑥, 𝑦)): 

 

𝑓𝑥𝑥(𝑥, 𝑦) = 2, 𝑓𝑦𝑦(𝑥, 𝑦) = 2      and      𝑓𝑥𝑦(𝑥, 𝑦) = 0. 
 

By the second derivative test, we have 

 

𝐷 = 𝑓𝑥𝑥(−3,2)𝑓𝑦𝑦(−3,2) − (𝑓𝑥𝑦(−3,2))
2

 

= (2)(2) − 02 

= 4. 

 

Note that 𝐷 > 0 and that 𝑓𝑥𝑥 > 0. Therefore, (−3,2, −11) is a local minimum point. The graph of 

𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 6𝑥 − 4𝑦 + 2 is a paraboloid that opens upward (in the direction of 

positive z). Its vertex is (−3,2, −11). We conclude that this point is also the absolute minimum 

point over the entire domain. 

 

         
 

Example 29.2: Find the critical points of 𝑧 = 𝑔(𝑥, 𝑦) = 𝑥4 + 𝑦4, and classify these points as 

minima, maxima or saddle. 

 

Solution: The first partial derivatives are 𝑔𝑥(𝑥, 𝑦) = 4𝑥3 and 𝑔𝑦(𝑥, 𝑦) = 4𝑦3. Setting each to 0,  

we get 𝑥 = 0 and 𝑦 = 0. Note that 𝑧 = 𝑔(0,0) = 0, so that (0,0,0) is the lone critical point. 
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The second derivatives are 𝑔𝑥𝑥(𝑥, 𝑦) = 12𝑥2, 𝑔𝑦𝑦(𝑥, 𝑦) = 12𝑦2 and 𝑔𝑥𝑦(𝑥, 𝑦) = 0. Using the 

second derivative test, we have 

 

𝐷 = 𝑔𝑥𝑥(0,0)𝑔𝑦𝑦(0,0) − (𝑔𝑥𝑦(0,0))
2

 

= [12(0)2][12(0)2] − 0 

= 0. 

 

The second derivative test yields no useful information. However, note that the cross sections of 

this surface are 𝑧 = 𝑥4 (when y = 0) and 𝑧 = 𝑦4 (when x = 0). In each case, the point (0,0) is a 

minimum, so we can infer that (0,0,0) is a local minimum point on the surface of 𝑧 = 𝑥4 + 𝑦4. 

The surface is bowl-shaped, with a flattened bottom, where (0,0,0) is its vertex. Viewing its graph 

suggests that the point is the absolute minimum, too. 

 

         

 

Example 29.3: Find the critical points of 𝑧 = ℎ(𝑥, 𝑦) = |𝑥| + |𝑦|, and classify these points as 

minima, maxima or saddle. 

 

Solution: Since |𝑥| = {
−𝑥, 𝑥 < 0
𝑥, 𝑥 ≥ 0

, then by inspection, 
𝑑

𝑑𝑥
|𝑥| = {

−1, 𝑥 < 0
1, 𝑥 > 0

, where the 

derivative is not defined (does not exist) at x = 0. A similar argument shows that for |𝑦|, the 

derivative does not exist at y = 0. Therefore, the point (0,0,0) is a critical point. However, the 

second derivative test is not applicable. Instead, we can classify the critical point by observing the 

graph of ℎ, where we see that (0,0,0) is a local and absolute minimum point. 
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Example 29.4: Find the critical points of 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥3 + 𝑦3 − 3𝑥 − 27𝑦 + 7, and classify 

these points as minima, maxima or neither. 

 

Solution: We find the partial derivatives: 

 

𝑓𝑥 = 3𝑥2 − 3 

𝑓𝑦 = 3𝑦2 − 27. 

 

These are set equal to 0 and solved for the variable: 

 

3𝑥2 − 3 = 0
3𝑦2 − 27 = 0

 ,   which simplifies as   
3(𝑥2 − 1) = 0 

3(𝑦2 − 9) = 0.
 

 

From the first equation, we have 𝑥2 − 1 = 0, from which we get 𝑥 = 1 and 𝑥 = −1. From the 

second equation, we have 𝑦2 − 9 = 0, so that 𝑦 = 3 and 𝑦 = −3. We combine these solutions in 

all possible ways, and we have four critical points: 

 

(1,3, 𝑓(1,3)), (1, −3, 𝑓(1, −3)),        (−1,3, 𝑓(−1,3)),     and      (−1, −3, 𝑓(−1, −3)). 

 

The z values are 𝑓(1,3) = −49, 𝑓(1, −3) = 59, 𝑓(−1,3) = −45 and 𝑓(−1, −3) = 63. 

 

To classify these critical points, we use the second derivative test. The second derivatives are 

 

𝑓𝑥𝑥(𝑥, 𝑦) = 6𝑥, 𝑓𝑦𝑦(𝑥, 𝑦) = 6𝑦      and     𝑓𝑥𝑦(𝑥, 𝑦) = 0. 

 

Thus, using the formula, we have 

 

𝐷 = 𝑓𝑥𝑥(𝑥, 𝑦)𝑓𝑦𝑦(𝑥, 𝑦) − (𝑓𝑥𝑦(𝑥, 𝑦))
2

= (6𝑥)(6𝑦). 

 

 When x = 1 and y = 3, we have 𝐷 = (6)(18), which is a positive number. Note that 𝑓𝑥𝑥(1,3) 

is also positive. Thus, the critical point (1, 3, −49) is a minimum. 

 

 When x = 1 and y = –3, we have 𝐷 = (6)(−18), which is a negative number. Thus, the critical 

point (1, −3, 59) is a saddle point. 

 

 When x = –1 and y = 3, we have 𝐷 = (−6)(18), which is a negative number. Thus, the critical 

point (−1, 3, −45) is a saddle point. 

 

 When x = –1 and y = –3, we have 𝐷 = (−6)(−18), which is a positive number. Note that 

𝑓𝑥𝑥(−1, −3) is negative. Thus, the critical point (−1, −3, 63) is a maximum. 
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Note that when finding D, it’s not important to determine its actual value. It’s more important to 

determine its sign. Thus, calculating (6)(18) is not as important as observing that the product of 

two positive values will be positive. Furthermore, by leaving the expression as (6)(18) rather than 

simplifying it, we can also quickly see that the value 6, representing 𝑓𝑥𝑥(𝑥, 𝑦) when x = 1, is 

positive. 

 

The graph of 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥3 + 𝑦3 − 3𝑥 − 27𝑦 + 7 is below: 

 

 
         

 

Often, a system must be solved to determine critical points. 

 

Example 29.5: Find the critical points of 𝑧 = 𝑔(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 4𝑥 + 𝑦 + 𝑥𝑦 + 3, and classify 

these points as minima, maxima or saddle. 

 

Solution: We find the partial derivatives: 

 

𝑔𝑥 = 2𝑥 − 4 + 𝑦 

𝑔𝑦 = 2𝑦 + 1 + 𝑥. 

 

These are set equal to 0 and a linear system in two variables results: 

 

2𝑥 − 4 + 𝑦 = 0
2𝑦 + 1 + 𝑥 = 0

 ,      which simplifies as      
2𝑥 + 𝑦 = 4    
𝑥 + 2𝑦 = −1.

 

 

We multiply the second equation by –2: 

 

2𝑥 + 𝑦 = 4 

−2𝑥 − 4𝑦 = 2. 
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Summing, we have −3𝑦 = 6, so that 𝑦 = −2.  Back substituting, we find that 𝑥 = 3. Thus, 

(3, −2, 𝑔(3, −2)) is the critical point. The z value is 𝑔(3, −2) = −4. 

 

The second derivatives are  

 

𝑔𝑥𝑥(𝑥, 𝑦) = 2,   𝑔𝑦𝑦(𝑥, 𝑦) = 2   and    𝑔𝑥𝑦(𝑥, 𝑦) = 1. 

 

Using the second derivative test, we have 

 

𝐷 = 𝑔𝑥𝑥(3, −2)𝑔𝑦𝑦(3, −2) − (𝑔𝑥𝑦(3, −2))
2

 

= (2)(2) − 12 

= 3. 
 

Since 𝐷 > 0 and 𝑔𝑥𝑥(3, −2) > 0, this point is a local minimum. The graph is a paraboloid with 

vertex (3, −2, −4) opening upward. Thus, the point is also an absolute minimum. 
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Example 29.6: Find the critical points of 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥3 − 𝑦3 − 2𝑥2 + 𝑥𝑦 + 3𝑦, and classify 

these points as minima, maxima or saddle. 

 

Solution: The partial derivatives are 

 

𝑓𝑥 = 3𝑥2 − 4𝑥 + 𝑦 

𝑓𝑦 = −3𝑦2 + 𝑥 + 3. 

 

Setting these to zero, we develop a non-linear system: 

 

3𝑥2 − 4𝑥 + 𝑦 = 0 

−3𝑦2 + 𝑥 + 3 = 0. 
 

Unlike the previous example, we cannot use the elimination method. Instead, we use substitution. 

In the first equation, solve for y: 

 

𝑦 = 4𝑥 − 3𝑥2. 
 

This is substituted into the second equation, then simplified: 

 

−3(4𝑥 − 3𝑥2)2 + 𝑥 + 3 = 0 

−3(16𝑥2 − 24𝑥3 + 9𝑥4) + 𝑥 + 3 = 0 

−27𝑥4 + 72𝑥3 − 48𝑥2 + 𝑥 + 3 = 0. 
 

Using a graphing calculator, we find four roots to this quartic equation. They are 

 

𝑥 ≈ −0.209,   𝑥 ≈ 0.364,   𝑥 ≈ 0.919   and   𝑥 ≈ 1.592. 
 

Evaluating the equation 𝑦 = 4𝑥 − 3𝑥2 at each of these x values, we have four critical points: 

 

(−0.209, −0.967, −1.891),   (0.364, 1.059, 2.158),    
(0.919, 1.142, 2.073)   and   (1.592, −1.235, −4.822). 

 

The z-values were found by evaluating 𝑓 at each x and y value. Note that the z-values alone do not 

provide enough information to classify these points as minimum, maximum or neither. We use the 

second derivative test. 

 

The second derivatives are 

 

𝑓𝑥𝑥 = 6𝑥 − 4,      𝑓𝑦𝑦 = −6𝑦,      𝑓𝑥𝑦 = 1. 
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Thus, we have 

 

𝐷 = 𝑓𝑥𝑥(𝑥𝑐, 𝑦𝑐)𝑓𝑦𝑦(𝑥𝑐, 𝑦𝑐) − (𝑓𝑥𝑦(𝑥𝑐, 𝑦𝑥))
2

 

= (6𝑥𝑐 − 4)(−6𝑦𝑐) − (1)2, 
 

where (𝑥𝑐, 𝑦𝑐) represent a critical point. 

 

Each critical point is evaluated into the second derivative test formula: 

 

 At (−0.209, −0.967, −1.891), we have 𝐷 = (6(−0.209) − 4)(−6(−0.967)) − 1 =

−31.484. Since D is negative, the point (−0.209, −0.967, −1.891) is a saddle point. 

 

 At (0.364, 1.059, 2.158), we have 𝐷 = (6(0.364) − 4)(−6(1.059)) − 1 = 10.539. Since D 

is positive and since 𝑓𝑥𝑥 is negative (as is 𝑓𝑦𝑦), the point (0.364, 1.059, 2.158) is a local 

maximum. 

 

 At (0.919, 1.142, 2.073), we have 𝐷 = (6(0.919) − 4)(−6(1.142)) − 1 = −11.373. Since 

D is negative, the point (0.919, 1.142, 2.073) is a saddle point. 

 

 At (1.592, −1.235, −4.822), we have 𝐷 = (6(1.592) − 4)(−6(−1.235)) − 1 = 40.14. 

Since D is positive and since 𝑓𝑥𝑥 is positive (as is 𝑓𝑦𝑦), the point (1.592, −1.235, −4.822) is 

a local minimum. 

 

Again, note that the z-values play no role in classifying these points. 
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