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38. Triple Integration  

over Rectangular Regions 
 
A rectangular solid region 𝑆 in 𝑅3 is defined by three compound inequalities,  

 

𝑎1 ≤ 𝑥 ≤ 𝑎2,      𝑏1 ≤ 𝑦 ≤ 𝑏2,       𝑐1 ≤ 𝑧 ≤ 𝑐2, 
 

where 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1 and 𝑐2 are constants. A function of three variables 𝑤 =
𝑓(𝑥, 𝑦, 𝑧) that is continuous over S can be integrated as a triple integral: 

 

∭ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑉
⬚

𝑆

= ∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧)
𝑐2

𝑐1

𝑏2

𝑏1

𝑎2

𝑎1

 𝑑𝑧 𝑑𝑦 𝑑𝑥. 

 

Observe that the integrals are nested: the inside integral, labeled 𝑑𝑧, is 

associated with the bounds 𝑐1 ≤ 𝑧 ≤ 𝑐2, and similarly as one works outward.  

 

The volume element is labeled 𝑑𝑉 and there are six possible orderings of the 

differentials 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧, whose product is equivalent to 𝑑𝑉: 

 
𝑑𝑧 𝑑𝑦 𝑑𝑥, 𝑑𝑧 𝑑𝑥 𝑑𝑦, 𝑑𝑦 𝑑𝑧 𝑑𝑥,
𝑑𝑦 𝑑𝑥 𝑑𝑧, 𝑑𝑥 𝑑𝑧 𝑑𝑦, 𝑑𝑥 𝑑𝑦 𝑑𝑧.

 

 

When all bounds are constant, no particular ordering is more advantageous than 

any other.  

 

         

 

Example 38.1: Evaluate  

 

∫ ∫ ∫ (𝑥 + 2𝑦𝑧2) 𝑑𝑧
4

−2

3

1

𝑑𝑦
2

−1

𝑑𝑥. 

 

Solution: The inner-most integral is evaluated. Since the integrand is being 

antidifferentiated with respect to z, the variables x and y are treated as constants 

or coefficients for the moment: 

 

∫ (𝑥 + 2𝑦𝑧2) 𝑑𝑧
4

−2

= [𝑥𝑧 +
2

3
𝑦𝑧3]

−2

4

 

= (𝑥(4) +
2

3
𝑦(4)3) − (𝑥(−2) +

2

3
𝑦(−2)3) 

= (4𝑥 +
128

3
𝑦) − (−2𝑥 −

16

3
𝑦) 

= 6𝑥 + 48𝑦. 
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This is now integrated with respect to y (the “middle” integral). The x is still 

treated as a constant or coefficient in this step: 

 

∫ (6𝑥 + 48𝑦) 𝑑𝑦
3

1

= [6𝑥𝑦 + 24𝑦2]1
3 

= (6𝑥(3) + 24(3)2) − (6𝑥(1) + 24(1)2) 

= 12𝑥 + 192. 

 

Lastly, this is integrated with respect to x, the “outer” integral: 

 

∫ (12𝑥 + 192) 𝑑𝑥
2

−1

= [6𝑥2 + 192𝑥]−1
2  

= (6(2)2 + 192(2)) − (6(−1)2 + 192(−1)) 

= 594. 

 

         

 

How do we interpret answers obtained from a triple integral? Analogous to a 

single-variable integral (the definite integral is the area between a curve and 

over an interval on the input axis) and a two-variable double integral (the 

definite double integral is the volume between a surface and a region in the input 

plane), a three-variable continuous function 𝑤 = 𝑓(𝑥, 𝑦, 𝑧) evaluated over a 

triple integral gives a “hyper-volume” between the graph of 𝑓 and the region S 

in 𝑅3 over which it is being integrated. However, the graph of 𝑤 = 𝑓(𝑥, 𝑦, 𝑧) is 

embedded within 𝑅4, so it is not easy to visualize this four-dimensional analog 

to area or volume. Nevertheless, it is a reasonable interpretation. 

 

One corollary is to allow the integrand to be 1. In such a case, we get a volume 

integral, where ∭ 1 𝑑𝑉
⬚

𝑆
 is the volume of S. 

 

Example 38.2: Evaluate  

 

∫ ∫ ∫ 1 𝑑𝑧
8

−1

4

2

𝑑𝑦
5

−3

𝑑𝑥. 

 

Solution: Working inside out, we have ∫ 1 𝑑𝑧
8

−1
= [𝑧]−1

8 = 8 − (−1) = 9. 

Then, we have 9 ∫ 𝑑𝑦
4

2
= 9[𝑦]2

4 = 9(4 − 2) = 18. Lastly, we have 18 ∫ 𝑑𝑥
5

−3
=

18[𝑥]−3
5 = 18(5 − (−3)) = 144. 

 

This is the volume of the rectangular solid region in 𝑅3 in which length x is 8 

units, length y is 2 units, and length z is 9 units. Not surprisingly, (8)(2)(9) =
144 cubic units. 
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Example 38.3: Evaluate  

 

∫ ∫ ∫ 𝑥2𝑦𝑧3
3

−1

 𝑑𝑥
4

0

𝑑𝑦
5

2

𝑑𝑧. 

 

Solution: Note the order of integration. The inside integral is integrated with 

respect to x. The 𝑦𝑧3 factors are treated as a constant and moved outside the 

integral:  

 

∫ 𝑥2𝑦𝑧3
3

−1

 𝑑𝑥 = 𝑦𝑧3 ∫ 𝑥2
3

−1

 𝑑𝑥 

= 𝑦𝑧3 [
1

3
𝑥3]

−1

3

 

= 𝑦𝑧3 ((
1

3
(3)3) − (

1

3
(−1)3)) =

28

3
𝑦𝑧3. 

 

This expression is now integrated with respect to y, the middle integral. We can 

move the 
28

3
𝑧3 to the front of the integral: 

 

∫ (
28

3
𝑦𝑧3)  𝑑𝑦

4

0

=
28

3
𝑧3 ∫ 𝑦 𝑑𝑦

4

0

 

=
28

3
𝑧3 [

1

2
𝑦2]

0

4

 

=
28

3
𝑧3(8) 

=
224

3
𝑧3. 

 

Lastly, this expression is integrated with respect to z: 

 

∫ (
224

3
𝑧3)  𝑑𝑧

5

2

=
224

3
∫ 𝑧3 𝑑𝑧

5

2

 

=
224

3
[
1

4
 𝑧4]

2

5

 

=
224

3
((

1

4
(5)4) − (

1

4
(2)4)) 

=
224

3
(

609

4
) 

=
136,416

12
= 11,368. 

 

 



212 

 

If the integrand is held by multiplication so that it can be written as 𝑓(𝑥, 𝑦, 𝑧) =
𝑔(𝑥)ℎ(𝑦)𝑘(𝑧), and the bounds are constants, then 

 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧)
𝑐2

𝑐1

𝑏2

𝑏1

𝑎2

𝑎1

 𝑑𝑧 𝑑𝑦 𝑑𝑥 = ∫ ∫ ∫ 𝑔(𝑥)ℎ(𝑦)𝑘(𝑧)
𝑐2

𝑐1

𝑏2

𝑏1

𝑎2

𝑎1

 𝑑𝑧 𝑑𝑦 𝑑𝑥 

= (∫ 𝑔(𝑥) 𝑑𝑥
𝑎2

𝑎1

) (∫ ℎ(𝑦) 𝑑𝑦
𝑏2

𝑏1

) (∫ 𝑘(𝑧) 𝑑𝑧
𝑐2

𝑐1

). 

 

         

 

Example 38.4: Use the shortcut shown above to evaluate  

 

∫ ∫ ∫ 𝑥2𝑦𝑧3
3

−1

 𝑑𝑥
4

0

𝑑𝑦
5

2

𝑑𝑧. 

 

Solution: Since the bounds are constants and the integrand is held by 

multiplication, the above triple integral can be rewritten as a product of three 

single-variable integrals, and evaluated individually: 

 

(∫ 𝑥2 𝑑𝑥
3

−1

) (∫ 𝑦 𝑑𝑦
4

0

) (∫ 𝑧3 𝑑𝑧
5

2

) = ([
1

3
𝑥3]

−1

3

) ([
1

2
𝑦2]

0

4

) ([
1

4
𝑧4]

2

5

) 

 

= (
1

3
(33 − (−1)3)) (

1

2
(42 − 02)) (

1

4
(54 − 24)) 

= (
28

3
) (8) (

609

4
) = 11,368. 

 

Note that this shortcut would not work with the first example, ∫ ∫ ∫ (𝑥 +
4

−2

3

1

2

−1

2𝑦𝑧2) 𝑑𝑧  𝑑𝑦  𝑑𝑥. 

 

         

 

 

 
See an error? Have a suggestion? 

Please see www.surgent.net/vcbook 
 
 
 
 
 
 
 
 

http://www.surgent.net/vcbook
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39. Triple Integration over  

Non-Rectangular Regions of Type I 
 
A solid region S in 𝑅3 is Type I if there is no ambiguity as to any of its bounds 

of integration in such a way that one triple integral is sufficient to describe S. 

Because there are six possible orderings of the variables of integration, it is 

possible that one ordering may result in a non-Type I (called Type-II) region, 

while another ordering may result in a Type I region. Whenever possible, choose 

a Type I ordering of integration. 

 

For example, all rectangular solid regions in the previous examples are Type I, 

in any ordering of the differentials. 

 

         

 

Example 39.1: Find ∭ 𝑑𝑉
⬚

𝑆
, where S is a solid hemisphere, centered at the 

origin, of radius 2 such that 𝑧 ≥ 0.  

 

Solution: Sketch the solid. The restriction 𝑧 ≥ 0 means all points are on or 

above the xy-plane: 

 

 
 

Now, select an ordering of integration. Let’s try 𝑑𝑧 𝑑𝑦 𝑑𝑥, so that the first 

integral is evaluated with respect to z. Sketch an arrow in the positive z direction 

so that it enters the solid through one surface, and exits through another. It is 

important to observe that in this case, there is no ambiguity as to where such an 

arrow would enter or exit the solid: it must enter through the surface 𝑧1 = 0 (the 

xy-plane) and must exit through 𝑧2 = √4 − 𝑥2 − 𝑦2, the hemisphere. These will 

be the bounds for the 𝑑𝑧 integral. 
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Now, we concentrate on the region defined by the x and y variables. This is the 

“footprint” of the solid on the xy-plane, and is a disk of radius 2, centered at the 

origin: 

 

 
 

If we next choose to integrate with respect to y, we draw an arrow in the positive 

y direction. It will enter the region through the lower half of the circle, 𝑦1 =

−√4 − 𝑥2, and exit through the upper half, 𝑦2 = √4 − 𝑥2. There is no 

ambiguity as to where this arrow enters or exits the region. It is of Type I as 

well. 

 

Lastly, the bounds for x are constants: −2 ≤ 𝑥 ≤ 2. The triple integral is 

 

∭ 𝑑𝑉
⬚

𝑆

= ∫ ∫ ∫ 𝑑𝑧 𝑑𝑦 𝑑𝑥
√4−𝑥2−𝑦2

0

√4−𝑥2

−√4−𝑥2

2

−2

. 

 

This is a volume integral (since the integrand is 1), representing the volume of 

the hemisphere of radius 2. Using geometry, the volume of a hemisphere is 
1

2
(

4

3
𝜋𝑟3). Thus, when 𝑟 = 2, we have 

1

2
(

4

3
𝜋𝑟3) =

2

3
𝜋(2)3 =

16

3
𝜋: 

 

∫ ∫ ∫ 𝑑𝑧 𝑑𝑦 𝑑𝑥
√4−𝑥2−𝑦2

0

√4−𝑥2

−√4−𝑥2

2

−2

=
16

3
𝜋. 
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The Legal Form of a Triple Integral 

 

Triple integrals follow the form shown below: 

 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑧
𝑧2(𝑥,𝑦)

𝑧1(𝑥,𝑦)

𝑑𝑦
𝑦2(𝑥)

𝑦1(𝑥)

𝑑𝑥
𝑏

𝑎

. 

 

Note the ordering of integration: z first, then y, then x. If this ordering is chosen, 

then the innermost integral will have bounds that may contain x and y, possibly 

both: 

 

𝑧1(𝑥, 𝑦) ≤ 𝑧 ≤ 𝑧2(𝑥, 𝑦). 
 

The next integral, with respect to y, may have bounds that contain x, but not z: 

 

𝑦1(𝑥) ≤ 𝑦 ≤ 𝑦2(𝑥). 
 

The last (outermost) integral with respect to x, has bounds that are constants: 

 

𝑎 ≤ 𝑥 ≤ 𝑏. 
 

The ordering of integration “drives” the bounds, so to speak. The following is a 

legal triple integral but in a different ordering of integration: 

 

∫ ∫ ∫ (𝑥2 + 𝑧) 𝑑𝑦
𝑥+𝑧

0

𝑑𝑧
3𝑥

−𝑥

𝑑𝑥
4

−1

. 

 

Note that the innermost integral with respect to y has bounds that may contain x 

or z (or both), while the middle integral, with respect to z, has bounds that may 

contain x, but not y. The outer integral’s bounds must be constant. 

 

This is an “illegal” triple integral: 

 

∫ ∫ ∫ (sin(𝑥𝑦𝑧) + 𝑥) 𝑑𝑧
𝑥

−𝑦2
𝑑𝑦

2𝑦

𝑥+𝑧

𝑑𝑥
2

0

. 

 

The innermost integral is legal: the bounds with respect to z may contain x or y 

(or both). However, the middle integral, with respect to y, cannot contain itself 

as a variable, nor z, since z is “done” by the time we evaluate this middle 

integral. 
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Example 39.2: Solid S is shown below. Let 𝑓(𝑥, 𝑦, 𝑧) be a generic integrand. 

 

 
 

a) Set up a triple integral over S in the dy dz dx ordering. 

b) Set up a triple integral over S in the dx dy dz ordering. 

c) Explain why any ordering starting with dz is not of Type I. 

 

Solution: 

 

a) Sketch an arrow in the positive y direction: 

 

 
 

This arrow enters the solid at the xz-plane (𝑦1 = 0), passes through the 

interior (gray), and exits out the plane 𝑧 + 𝑦 = 4, or 𝑦2 = 4 − 𝑧. These 

are the bounds for y.  

 

Next, we look at the footprint of the solid as projected onto the xz-

plane. Variable y is no longer needed. 
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This region is Type I. The z-bounds, as shown by the arrow above, are 

0 ≤ 𝑧 ≤ 4 − 𝑥2, and the x bounds are constants, −2 ≤ 𝑥 ≤ 2. Thus, 

the triple integral is 

 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑦
4−𝑧

0

𝑑𝑧
4−𝑥2

0

𝑑𝑥
2

−2

. 

 

Note that this integral is “legal”. Do you agree? 

 

b) For the dx dy dz ordering, draw an arrow in the positive x direction. It 

enters the region through the parabolic sheet 𝑥1 = −√4 − 𝑧 and exits 

through 𝑥2 = √4 − 𝑧. 

 

 
 

Variable x is “done”. We now look at the footprint of the solid 

projected onto the yz plane, and since the middle integral will be with 

respect to y, we sketch an arrow in the positive y direction. 
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This region is also Type I. An arrow drawn in the positive y direction 

enters it at 𝑦1 = 0 (the z axis) and exits through the line 𝑦2 = 4 − 𝑧. 

Finally, the bounds on z are 0 ≤ 𝑧 ≤ 4. The triple integral is 

 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑥
√4−𝑧

−√4−𝑧

𝑑𝑦
4−𝑧

0

𝑑𝑧
4

0

. 

 

Study this integral to convince yourself it is legal. 

 

c) Any ordering starting with dz is not of Type I because an arrow drawn 

in the positive z direction may exit through the plane 𝑧 = 4 − 𝑦, or the 

parabolic sheet 𝑧 = 4 − 𝑥2. Because there is ambiguity as to z’s 

bounds, this solid is not of Type I if starting the integration with respect 

to z. In such a case, it’s wise to find a different ordering. 
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Example 39.3: Solid S is bounded by the surface 𝑧 = 4 − 𝑥2 − 𝑦2, the plane 

𝑦 = 𝑥, the xy-plane and the xz-plane in the first octant. Find this solid’s volume. 

 

Solution: It is important to visualize the solid. The surface 𝑧 = 4 − 𝑥2 − 𝑦2 is 

a paraboloid with vertex (0,0,4) that opens downward (left image below). The 

plane 𝑦 = 𝑥 can be seen as the line 𝑦 = 𝑥 in 𝑅2, then extended into the z-

direction (middle image, below). 

 

 
 

If we choose to integrate with respect to z first, there will be no ambiguity in the 

bounds. The bounds for z will be 0 ≤ 𝑧 ≤ 4 − 𝑥2 − 𝑦2. The footprint of this 

region on the xy-plane is a circular wedge: 

 

 
 

We use polar coordinates to describe this region. Recalling that 𝑥 = 𝑟 cos 𝜃 and 

𝑦 = 𝑟 sin 𝜃, then this region’s bounds are 0 ≤ 𝑟 ≤ 2 and 0 ≤ 𝜃 ≤
𝜋

4
. However, 

since we have replaced variables x and y with 𝑟 and 𝜃, the top bound for z, which 

is 4 − 𝑥2 − 𝑦2, is rewritten as 4 − (𝑥2 + 𝑦2) = 4 − 𝑟2. 
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Thus, the volume is given by the triple integral below, with 1 as the integrand. 

Note the Jacobian 𝑟 is also present in the integral.  

 

∫ ∫ ∫ 1 
4−𝑟2

0

2

0

𝜋 4⁄

0

𝑑𝑧 𝑟 𝑑𝑟 𝑑𝜃. 

 

The inside integral is evaluated first: 

 

∫ 1 
4−𝑟2

0

𝑑𝑧 = 4 − 𝑟2. 

 

This is then integrated with respect to 𝑟: 

 

∫ (4 − 𝑟2)𝑟 𝑑𝑟
2

0

= ∫ (4𝑟 − 𝑟3) 𝑑𝑟
2

0

= [2𝑟2 −
1

4
𝑟4]

0

2

= 8 − 4 = 4. 

 

Lastly, the outside integral is evaluated: 

 

∫ 4 𝑑𝜃
𝜋 4⁄

0

= 4 (
𝜋

4
) = 𝜋. 

 

The solid has a volume of 𝜋 cubic units. 

 

         

 

The previous example, in which the variables x and y were replaced with 𝑟 and 

𝜃, is an example of integrating in cylindrical coordinates. Note that the variable 

z was left unchanged, but its bounds, which included variables x and y, had to 

be adjusted to include the new variables 𝑟 and 𝜃. In general, such a triple integral 

in cylindrical coordinates is given by 

 

∫ ∫ ∫ 𝑓(𝑟, 𝜃, 𝑧) 𝑑𝑧
𝑧2(𝑟,𝜃)

𝑧1(𝑟,𝜃)

𝑟 𝑑𝑟
𝑟2

𝑟1

𝑑𝜃
𝜃2

𝜃1

. 

 

Typically, the inside integral, with respect to z, is integrated first. 

 

This does not exclude situations where two of the other variables may be 

exchanged for 𝑟 and 𝜃. For example, if variables y and z are defined over a 

region that is better described using polar coordinates, then x is left alone, but 

the bounds for x are adjusted to include 𝑟 and 𝜃, and a triple integral in 

cylindrical coordinates would be given by 

 

∫ ∫ ∫ 𝑓(𝑥, 𝑟, 𝜃) 𝑑𝑥
𝑥2(𝑟,𝜃)

𝑥1(𝑟,𝜃)

𝑟 𝑑𝑟
𝑟2

𝑟1

𝑑𝜃
𝜃2

𝜃1

. 
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Furthermore, the transformation is arbitrary: we can declare that 𝑦 = 𝑟 cos 𝜃 

and 𝑧 = 𝑟 sin 𝜃, or that 𝑦 = 𝑟 sin 𝜃 and 𝑧 = 𝑟 cos 𝜃. As long as the bounds are 

handled correctly, either transformation is acceptable. 

 

         

 

Example 39.4: A cylinder, 𝑥2 + 𝑧2 = 1, is intersected by the planes 𝑦 + 𝑧 = 1 

and 𝑦 − 𝑧 = −1. Find the volume of this intersecting region. 

 

Solution: Below is a sketch of the region. Note that the cylinder 𝑥2 + 𝑧2 = 1 

can be viewed as a circle of radius 1, centered at the origin, on the xz-plane, then 

extended into the positive and negative y directions. The planes 𝑦 + 𝑧 = 1 and 

𝑦 − 𝑧 = −1 can be viewed as lines on the yz-plane, then extended into the 

positive and negative x directions. 

 

 
 

Visualizing an arrow in the positive y direction, it enters the solid through the 

plane 𝑦 − 𝑧 = −1, or 𝑦1 = 𝑧 − 1, then exits the solid through the plane 𝑦 + 𝑧 =
1, or 𝑦2 = 1 − 𝑧. Note that variables x and z form a circular region on the xz-

plane, and this suggests we may want to exchange them for 𝑟 and 𝜃, and 

integrate with respect to y first. The bounds for 𝑟 are 0 ≤ 𝑟 ≤ 1 and the bounds 

for 𝜃 are 0 ≤ 𝜃 ≤ 2𝜋. An initial triple integral in cylindrical coordinates is given 

by 

 

∫ ∫ ∫ (1) 𝑑𝑦 𝑟 𝑑𝑟 𝑑𝜃
1−𝑧

𝑧−1

.
1

0

2𝜋

0
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However, this is not quite correct. The bounds for y need to be written in terms 

of 𝑟 and 𝜃. If we define 𝑥 = 𝑟 cos 𝜃 and 𝑧 = 𝑟 sin 𝜃, the triple integral is now 

properly written as 

 

∫ ∫ ∫ (1) 𝑑𝑦 𝑟 𝑑𝑟 𝑑𝜃
1−𝑟 sin 𝜃

𝑟 sin 𝜃−1

.
1

0

2𝜋

0

 

 

 

The inside integral is evaluated first: 

 

∫ (1) 𝑑𝑦
1−𝑟 sin 𝜃

𝑟 sin 𝜃−1

= [𝑦]𝑟 sin 𝜃−1
1−𝑟 sin 𝜃 = (1 − 𝑟 sin 𝜃) − (𝑟 sin 𝜃 − 1)

= 2 − 2𝑟 sin 𝜃.  
 

This is integrated with respect to 𝑟: 

 

∫ (2 − 2𝑟 sin 𝜃)
1

0

𝑟 𝑑𝑟 = ∫ (2𝑟 − 𝑟2 sin 𝜃)
1

0

𝑟 𝑑𝑟 

= [𝑟2 −
2

3
𝑟3 sin 𝜃]

0

1

 

= 1 −
2

3
sin 𝜃. 

 

Finally, this is integrated with respect to 𝜃: 

 

∫ (
2𝜋

0

1 −
2

3
sin 𝜃) 𝑑𝜃 = [𝜃 +

2

3
cos 𝜃]

0

2𝜋

 

= ((2𝜋) +
2

3
cos(2𝜋))

− ((0) +
2

3
cos(0))      {

Recall that cos(2𝜋) = 1

and cos(0) = 1.              
 

= 2𝜋 +
2

3
−

2

3
= 2𝜋. 
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Finding Volumes using Double Integrals and Triple Integrals. What’s the 

Difference? 

 

Suppose we want to determine the volume contained between the surface 

(graph) of 𝑧 = 𝑓(𝑥, 𝑦) and the plane 𝑧 = 0 (the xy-plane), where the region of 

integration in the xy-plane is defined by 𝑦1(𝑥) ≤ 𝑦 ≤ 𝑦2(𝑥) and 𝑎 ≤ 𝑥 ≤ 𝑏. 

Using a double integral, we would write 

 

∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
𝑦2(𝑥)

𝑦1(𝑥)

𝑑𝑥
𝑏

𝑎

. 

 

Using a triple integral, we would write  

 

∫ ∫ ∫ 𝑑𝑧
𝑓(𝑥,𝑦)

0

𝑑𝑦
𝑦2(𝑥)

𝑦1(𝑥)

𝑑𝑥
𝑏

𝑎

. 

 

Observe that the innermost integral is ∫ 𝑑𝑧
𝑓(𝑥,𝑦)

0
= [𝑧]0

𝑓(𝑥,𝑦)
= 𝑓(𝑥, 𝑦). 

 

This is a common tactic, in which the integrand can be rewritten as the bound(s) 

of an entirely new integral. For example, if we wanted to find the volume 

between the paraboloids 𝑧 = 8 − 𝑥2 − 𝑦2 and 𝑧 = 𝑥2 + 𝑦2, we could represent 

this volume by a double integral: 

 

∫ ∫ ((8 − 𝑥2 − 𝑦2) − (𝑥2 + 𝑦2)) 𝑑𝑦
√4−𝑥2

−√4−𝑥2
𝑑𝑥,

2

−2

 

 

where the region of integration in the xy-plane is a circle of radius 2, and the 

integrand is written as “top surface” minus “bottom surface”. As a triple 

integral, we have 

 

∫ ∫ ∫ 𝑑𝑧
8−𝑥2−𝑦2

𝑥2+𝑦2
𝑑𝑦

√4−𝑥2

−√4−𝑥2
𝑑𝑥.

2

−2

 

 

Any variable expression can be rewritten in integral form. For example, 𝑥2 =

∫ 𝑑𝑡
𝑥2

0
. We can be creative too. For example, 2𝑥3 − 𝑥𝑦 = ∫ 𝑑𝑡

2𝑥3−𝑥𝑦

0
 or 

∫ 𝑑𝑡
2𝑥3

𝑥𝑦
. 
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Example 39.5: Consider the triple integral 

 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑥

1
2

𝑧

0

𝑑𝑧
16−𝑦2

0

𝑑𝑦
4

−4

. 

 

Rewrite this integral in the 𝑑𝑦 𝑑𝑧 𝑑𝑥 ordering. 

 

Solution: From the bounds, we can develop the solid S over which the integral 

is defined. Working inside out, we see that the bounds for x are 0 ≤ 𝑥 ≤
1

2
𝑧. 

This suggests that one bounding surface is the yz-plane, since 𝑥 = 0. The other 

bounding surface is the plane, 𝑥 =
1

2
𝑧. It is important to remember that the 

bounding surfaces exist in 𝑅3. Note that 𝑥 =
1

2
𝑧 is the same as 𝑧 = 2𝑥. 

 

 
 

Now, the middle integral suggests that the bounds for z are the xy-plane (z = 0) 

and the parabolic sheet, 𝑧 = 16 − 𝑦2: 

 

 
 

From this, the shape of the solid can be inferred. Strategic points are identified. 
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To rewrite the integral in the dy dz dx ordering, visualize an arrow in the positive 

y direction. There is no ambiguity where it enters or exits the solid. It enters 

through one half of the parabolic sheet 𝑦1 = −√16 − 𝑧 and exits through the 

other half, 𝑦2 = √16 − 𝑧. These are the bounds for y. 

 

Now, we view the footprint of the solid as it appears projected onto the xz-plane. 

It will appear as a triangle, as shown below: 

 

 
 

Integrating next with respect to z, the lower bound is 𝑧1 = 2𝑥 and the upper 

bound is 𝑧2 = 16. Lastly, the bounds for x are 0 ≤ 𝑥 ≤ 8. Thus, the triple 

integral 

 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑥

1
2

𝑧

0

 𝑑𝑧
16−𝑦2

0

 𝑑𝑦
4

−4

 

 

is equivalent to 

 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑦
√16−𝑧

−√16−𝑧

𝑑𝑧
16

2𝑥

𝑑𝑥
8

0

. 
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Example 39.6: Let solid S be a tetrahedron in the first octant with vertices 

(0,0,0), (2,0,0), (0,4,0) and (0,0,8). Set up all six possible triple integrals 

∭ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑉
⬚

𝑆
. 

 

Solution: The equation of the plane that passes through the points (𝑎, 0,0), 

(0, 𝑏, 0) and (0,0, 𝑐) is given by 

 
𝑥

𝑎
+

𝑦

𝑏
+

𝑧

𝑐
= 1.       (See Example 13.6) 

 

Thus, the equation of the plane passing through (2,0,0), (0,4,0) and (0,0,8) is 

 
𝑥

2
+

𝑦

4
+

𝑧

8
= 1. 

 

If the inside integral is chosen to be evaluated with respect to z, then solve for 

z, getting 𝑧 = 8 − 4𝑥 − 2𝑦. The bounds are 0 ≤ 𝑧 ≤ 8 − 4𝑥 − 2𝑦. This leaves 

a triangular region in the xy-plane with vertices (0,0), (2,0) and (0,4), shown 

below. 

 

 
 

Integrating next with respect to y, the bounds are 0 ≤ 𝑦 ≤ 4 − 2𝑥, and lastly, 

the bounds on x are 0 ≤ 𝑥 ≤ 2. The triple integral is 

 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑧
8−4𝑥−2𝑦

0

𝑑𝑦
4−2𝑥

0

𝑑𝑥
2

0

. 

 

Suppose we chose to integrate next with respect to x instead of y. The bounds 

on x would be 0 ≤ 𝑥 ≤ 2 −
1

2
𝑦, with 0 ≤ 𝑦 ≤ 4, and the triple integral would 

be  

 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑧
8−4𝑥−2𝑦

0

𝑑𝑥
2−(1 2⁄ )𝑦

0

𝑑𝑦
4

0

. 
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Repeating this process from the start, suppose that the inside integral is chosen 

to be evaluated with respect to y. Solve for y, getting 𝑦 = 4 − 2𝑥 −
1

2
𝑧. The 

bounds of this integral are 0 ≤ 𝑦 ≤ 4 − 2𝑥 −
1

2
𝑧. This leaves a triangular region 

in the xz-plane with vertices (0,0), (2,0) and (0,8), shown below. 

 

 
 

 

Integrating next with respect to z, the bounds are 0 ≤ 𝑧 ≤ 8 − 4𝑥, where the 

bounds on x are 0 ≤ 𝑥 ≤ 2. The triple integral is 

 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑦
4−2𝑥−(1 2⁄ )𝑧

0

𝑑𝑧
8−4𝑥

0

𝑑𝑥
2

0

. 

 

But if we chose to integrate next with respect to x, the bounds on x would be 

0 ≤ 𝑥 ≤ 2 −
1

4
𝑧, where 0 ≤ 𝑧 ≤ 8. The triple integral would be 

 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑦
4−2𝑥−(1 2⁄ )𝑧

0

𝑑𝑥
2−(1 4⁄ )𝑧

0

𝑑𝑧
8

0

. 

 

You should verify that the triple integral in the 𝑑𝑥 𝑑𝑦 𝑑𝑧 ordering is 

 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑥
2−(1 2⁄ )𝑦−(1 4⁄ )𝑧

0

𝑑𝑦
4−(1 2⁄ )𝑧

0

𝑑𝑧,
8

0

 

 

and that the triple integral in the 𝑑𝑥 𝑑𝑧 𝑑𝑦 ordering is 

 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑥
2−(1 2⁄ )𝑦−(1 4⁄ )𝑧

0

𝑑𝑧
8−2𝑦

0

𝑑𝑦.
4

0

 

 

These six possible triple integrals all describe the same object and all would 

evaluate to the same numerical value. 


