Calculus-III Tangent Planes Practice Problems.

Answers are not included. You are encouraged to work together and post ideas and comments on Piazza.
Example: Find the equation of the tangent plane to $f(x, y)=x^{4} y-y^{2}$ at $x_{0}=2$ and $y_{0}=3$, and use the tangent plane to estimate the value of $f(2.1,2.95)$.

Solution: We need the full point: $z_{0}=f\left(x_{0}, y_{0}\right)=(2)^{4}(3)-(3)^{2}=39$. Thus, the point of tangency is $(2,3,39)$.
The general form of a tangent plane is $z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$.
Find the partial derivatives and evaluate at $x_{0}=2$ and $y_{0}=3$:

$$
\begin{gathered}
f_{x}(x, y)=4 x^{3} y \\
f_{y}(x, y)=x^{4}-2 y
\end{gathered} \rightarrow \begin{gathered}
f_{x}(2,3)=4(2)^{3}(3)=96 \\
f_{y}(2,3)=(2)^{4}-2(3)=10
\end{gathered}
$$

Now, assemble your plane:

$$
z-39=96(x-2)+10(y-3)
$$

Simplify by clearing parentheses: $z-39=96 x-192+10 y-30$, then isolate z :

$$
z=96 x+10 y-183
$$

To estimate $f(2.1,2.95)$, use the plane:

$$
\begin{aligned}
z & =96(2.1)+10(2.95)-183 \\
& =201.6+29.5-183 \\
& =48.1
\end{aligned}
$$

The actual value of $f(2.1,2.95)$ is $(2.1)^{4}(2.95)-(2.95)^{2}=48.669395 \ldots$. Note that the plane gave a very close approximation that uses easier arithmetic. This is also a good check of your work.

1. Find the equation of the tangent plane to $f(x, y)=x^{2}+y^{2}$ at $x_{0}=3$ and $y_{0}=4$, and use the tangent plane to estimate the value of $f(3.1,3.9)$.
2. Find the equation of the tangent plane to $f(x, y)=2 x y^{2}$ at $x_{0}=1$ and $y_{0}=-2$, and use the tangent plane to estimate the value of $f(1.05,-1.9)$.
3. Find the equation of the tangent plane to $f(x, y)=x^{3} y-2 x$ at $x_{0}=-1$ and $y_{0}=3$, and use the tangent plane to estimate the value of $f(-1.02,3.04)$.
4. Find the equation of the tangent plane to $f(x, y)=\sqrt{x-2 y}$ at $x_{0}=5$ and $y_{0}=1$, and use the tangent plane to estimate the value of $f(5.1,1.06)$.
5. Find the equation of the tangent plane to $f(x, y)=\ln \left(x^{2}-y^{3}\right)$ at $x_{0}=4$ and $y_{0}=2$, and use the tangent plane to estimate the value of $f(4.2,1.9)$.
6. Find the equation of the tangent plane to $f(x, y)=\frac{6 x}{y}$ at $x_{0}=1$ and $y_{0}=4$, and use the tangent plane to estimate the value of $f(1.04,3.98)$.
7. Find the equation of the tangent plane to $f(x, y)=\frac{x+y}{x-y}$ at $x_{0}=-2$ and $y_{0}=5$, and use the tangent plane to estimate the value of $f(-2.1,4.9)$.
8. Find the equation of the tangent plane to $f(x, y)=e^{x y}$ at $x_{0}=1$ and $y_{0}=2$, and use the tangent plane to estimate the value of $f(1.1,1.93)$.
9. Find the equation of the tangent plane to $f(x, y)=x \sin y$ at $x_{0}=6$ and $y_{0}=\frac{\pi}{2}$, and use the tangent plane to estimate the value of $f(6.1,1.5)$.
10. Find the equation of the tangent plane to $f(x, y)=x^{3}-y^{2}$ at $x_{0}=8$ and $y_{0}=11$, and use the tangent plane to estimate the value of $f(8.2,11.2)$.
