Calculus-III Tangent Planes Practice Problems.

Answers are not included. You are encouraged to work together and post ideas and comments on Piazza.

Example: Find the equation of the tangent plane to $f(x, y) = x^4y - y^2$ at $x_0 = 2$ and $y_0 = 3$, and use the tangent plane to estimate the value of f(2.1, 2.95).

Solution: We need the full point: $z_0 = f(x_0, y_0) = (2)^4 (3) - (3)^2 = 39$. Thus, the point of tangency is (2,3,39).

The general form of a tangent plane is $z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$.

Find the partial derivatives and evaluate at $x_0 = 2$ and $y_0 = 3$:

$$f_x(x, y) = 4x^3y \qquad f_x(2,3) = 4(2)^3(3) = 96$$

$$f_y(x, y) = x^4 - 2y \rightarrow f_y(2,3) = (2)^4 - 2(3) = 10$$

Now, assemble your plane:

$$z - 39 = 96(x - 2) + 10(y - 3).$$

Simplify by clearing parentheses: z - 39 = 96x - 192 + 10y - 30, then isolate z:

$$z = 96x + 10y - 183.$$

To estimate f(2.1,2.95), use the plane:

$$z = 96(2.1) + 10(2.95) - 183$$

= 201.6 + 29.5 - 183
= 48.1.

The *actual* value of f(2.1, 2.95) is $(2.1)^4(2.95) - (2.95)^2 = 48.669395 \dots$. Note that the plane gave a very close approximation that uses easier arithmetic. This is also a good check of your work.

- 1. Find the equation of the tangent plane to $f(x, y) = x^2 + y^2$ at $x_0 = 3$ and $y_0 = 4$, and use the tangent plane to estimate the value of f(3.1, 3.9).
- 2. Find the equation of the tangent plane to $f(x, y) = 2xy^2$ at $x_0 = 1$ and $y_0 = -2$, and use the tangent plane to estimate the value of f(1.05, -1.9).
- 3. Find the equation of the tangent plane to $f(x, y) = x^3y 2x$ at $x_0 = -1$ and $y_0 = 3$, and use the tangent plane to estimate the value of f(-1.02, 3.04).
- 4. Find the equation of the tangent plane to $f(x, y) = \sqrt{x 2y}$ at $x_0 = 5$ and $y_0 = 1$, and use the tangent plane to estimate the value of f(5.1, 1.06).
- 5. Find the equation of the tangent plane to $f(x, y) = \ln(x^2 y^3)$ at $x_0 = 4$ and $y_0 = 2$, and use the tangent plane to estimate the value of f(4.2, 1.9).
- 6. Find the equation of the tangent plane to $f(x, y) = \frac{6x}{y}$ at $x_0 = 1$ and $y_0 = 4$, and use the tangent plane to estimate the value of f(1.04, 3.98).

- 7. Find the equation of the tangent plane to $f(x, y) = \frac{x+y}{x-y}$ at $x_0 = -2$ and $y_0 = 5$, and use the tangent plane to estimate the value of f(-2.1, 4.9).
- 8. Find the equation of the tangent plane to $f(x, y) = e^{xy}$ at $x_0 = 1$ and $y_0 = 2$, and use the tangent plane to estimate the value of f(1.1, 1.93).
- 9. Find the equation of the tangent plane to $f(x, y) = x \sin y$ at $x_0 = 6$ and $y_0 = \frac{\pi}{2}$, and use the tangent plane to estimate the value of f(6.1, 1.5).
- 10. Find the equation of the tangent plane to $f(x, y) = x^3 y^2$ at $x_0 = 8$ and $y_0 = 11$, and use the tangent plane to estimate the value of f(8.2, 11.2).