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27. Tangent Planes & Approximations 
 
If 𝑧 = 𝑓(𝑥, 𝑦) is a differentiable surface in 𝑅3 and (𝑥0, 𝑦0, 𝑧0) is a point on this 

surface, then it is possible to construct a plane passing through this point, tangent 

to the surface of 𝑓. 

 

Recall that a plane is constructed by determining a vector 𝐧 = 〈𝑎, 𝑏, 𝑐〉 normal 

to the plane and identifying a point (𝑥0, 𝑦0, 𝑧0) on the plane. With this 

information, the equation of the plane is given by 

 

𝑎(𝑥 − 𝑥0) + 𝑏(𝑦 − 𝑦0) + 𝑐(𝑧 − 𝑧0) = 0. 
 

To find this desired normal vector n, we temporarily write 𝑧 = 𝑓(𝑥, 𝑦) as a 

function of three variables, 𝐹(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦) − 𝑧, noting that the equation 

𝑓(𝑥, 𝑦) − 𝑧 = 0 is now a level curve of the graph of F. Recall from Section 26 

that the vectors in the gradient of F will be orthogonal to all level curves of the 

graph of F. We start with ∇𝐹 = 〈𝐹𝑥, 𝐹𝑦, 𝐹𝑧〉, and observe that 𝐹𝑥 = 𝑓𝑥 and that 

𝐹𝑦 = 𝑓𝑦, and since we wrote 𝐹(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦) − 𝑧, that 𝐹𝑧 = −1. Therefore, 

 

𝐧 = 〈𝑎, 𝑏, 𝑐〉 = 〈𝑓𝑥(𝑥0, 𝑦0), 𝑓𝑦(𝑥0, 𝑦0), −1〉. 

 

Tying this all together, the equation of the tangent plane to a point (𝑥0, 𝑦0, 𝑧0) 

on the surface of 𝑧 = 𝑓(𝑥, 𝑦) is given by 

 

𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0) − (𝑧 − 𝑧0) = 0. 

  

         

 

Example 27.1: Let 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2 + 2𝑥𝑦3. Find the equation of the tangent 

plane to 𝑓 when 𝑥0 = 1 and 𝑦0 = 2. 

 

Solution: When 𝑥0 = 1 and 𝑦0 = 2, then 𝑧0 = 𝑓(𝑥0, 𝑦0) = 𝑓(1,2) = (1)2 +
2(1)(2)3 = 17. Thus, the point of tangency is (𝑥0, 𝑦0, 𝑧0) = (1,2,17).  

 

The partial derivatives are 𝑓𝑥(𝑥, 𝑦) = 2𝑥 + 2𝑦3 and 𝑓𝑦(𝑥, 𝑦) = 6𝑥𝑦2. 

Evaluated at 𝑥0 = 1 and 𝑦0 = 2, we have 𝑓𝑥(1,2) = 18 and 𝑓𝑦(1,2) = 24. 

Thus, the plane of tangency is 

 

18(𝑥 − 1) + 24(𝑦 − 2) − (𝑧 − 17) = 0. 
 

Simplified, the plane is 18𝑥 + 24𝑦 − 𝑧 = 49, or with z isolated, we obtain      

𝑧 = 18𝑥 + 24𝑦 − 49. 
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Example 27.2: Find the equation of the tangent plane to 𝑧 = 𝑔(𝑥, 𝑦) =
2𝑥+𝑦

3𝑦2  

when 𝑥0 = −2 and 𝑦0 = 3. 

 

Solution: The point of tangency is (𝑥0, 𝑦0, 𝑧0) = (−2,3, −
1

27
), where 𝑧0 =

2(−2)+(3)

3(3)2 = −
1

27
.  

 

The partial derivatives are 

 

𝑔𝑥(𝑥, 𝑦) =
2

3𝑦2
       and       𝑔𝑦(𝑥, 𝑦) = −

𝑦 + 4𝑥

3𝑦3
. 

 

 Evaluated at 𝑥0 = −2 and 𝑦0 = 3, we have 𝑔𝑥(−2,3) =
2

27
 and 𝑔𝑦(−2,3) =

5

81
. Thus, the equation of the plane of tangency is 

 

2

27
(𝑥 − (−2)) +

5

81
(𝑦 − 3) − (𝑧 − (−

1

27
)) = 0. 

 

Multiplying by 81 to clear fractions and then distributing to clear parentheses, 

the equation is simplified to 6𝑥 + 5𝑦 − 81𝑧 = 6. 

 

         

 

This process can be extended to surfaces in higher dimension. 

 

Example 27.3: Find the equation of the tangent plane to 𝑤 = 𝑓(𝑥, 𝑦, 𝑧) =
𝑥2𝑦3𝑧4 at (2,1, −2,64). 

 

Solution: The partial derivatives are evaluated at 𝑥0 = 2, 𝑦0 = 1 and 𝑧0 = −2: 

 

𝑓𝑥(𝑥, 𝑦, 𝑧) = 2𝑥𝑦3𝑧4 → 𝑓𝑥(2,1, −2) = 64, 
𝑓𝑦(𝑥, 𝑦, 𝑧) = 3𝑥2𝑦2𝑧4 → 𝑓𝑦(2,1, −2) = 192, 

𝑓𝑧(𝑥, 𝑦, 𝑧) = 4𝑥2𝑦3𝑧3 → 𝑓𝑧(2,1, −2) = −128. 
 

Thus, the plane of tangency is 

 

64(𝑥 − 2) + 192(𝑦 − 1) − 128(𝑧 − (−2)) − 1(𝑤 − 64) = 0. 

 

Solving for w, we have 

 

𝑤 = 64(𝑥 − 2) + 192(𝑦 − 1) − 128(𝑧 + 2) + 64. 
 

Simplified, we have 𝑤 = 64𝑥 + 192𝑦 − 128𝑧 − 512. 
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Tangent planes can be used to estimate values on the surface of a multi-variable 

function 𝑓. 

 

Example 27.4: Given that 𝑧 = 18𝑥 + 24𝑦 − 49 is the equation of the plane 

tangent to the surface 𝑓(𝑥, 𝑦) = 𝑥2 + 2𝑥𝑦3 when 𝑥0 = 1 and 𝑦0 = 2, estimate 

the value of 𝑓(1.1, 1.9). 

 

Solution: Since planes consist only of linear and constant terms, it is usually 

easier to evaluate points on a plane rather than points on a surface. In this case, 

we have 

 

𝑧 = 18(1.1) + 24(1.9) − 49 = 16.4. 
 

Observe that the point (1.1, 1.9, 16.4) lies on the tangent plane, not on the 

surface of 𝑓. However, if we were to evaluate 𝑓 at 𝑥 = 1.1 and 𝑦 = 1.9, we 

obtain 

 

𝑓(1.1, 1.9) = (1.1)2 + 2(1.1)(1.9)3 = 16.2998. 
 

The estimated value of 16.4 is an excellent approximation of the actual value of 

16.2998. Using planes to estimate values on a surface requires that the point of 

evaluation be “close” to the point of tangency. In this example, 1.1 is close to 1, 

and 1.9 is close to 2. However, suppose that we wanted to use the tangent plane 

to estimate 𝑓(1.5, 2.4). We get 

 

𝑧 = 18(1.5) + 24(2.4) − 49 = 35.6, 
 

The actual point on the surface is 𝑓(1.5, 2.4) = 43.722. We see that the 

estimated value of z is not close to the actual value of z. 

 

         

 

Example 27.5: Given the surface 𝑤 = 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2𝑦3𝑧4 at (2,1, −2,64) in 

Example 27.3, estimate the value of 𝑤 = 𝑓(2.01, 0.99, −1.98). 

 

Solution: We use the equation 𝑤 = 64(𝑥 − 2) + 192(𝑦 − 1) − 128(𝑧 + 2) +

64 from Example 27.3. We then substitute x = 2.01, y = 0.99 and z = –1.98:   

 

𝑤 = 64(2.01 − 2) + 192(0.99 − 1) − 128(−1.98 + 2) + 64 

= 64(0.01) + 192(−0.01) − 128(0.02) + 64 

= 0.64 − 1.92 − 2.56 + 64 

= −3.84 + 64 

= 60.16. 
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The actual w-value is 𝑤 = 𝑓(2.01, 0.99, −1.98) = (2.01)2(0.99)3(−1.98)4 =

60.25. The estimation is very close to the actual value. 

 

         

 

Example 27.6: Find the acute angle that the tangent plane of 𝑓(𝑥, 𝑦) = 3𝑥2 −
2𝑦, when 𝑥0 = −2 and 𝑦0 = 3, makes with the xy-plane. 

 

Solution: The partial derivatives are 𝑓𝑥(𝑥, 𝑦) = 6𝑥 and 𝑓𝑦(𝑥, 𝑦) = −2. Thus, 

the normal vector n is 

 

𝐧 = 〈𝑓𝑥(−2,3), 𝑓𝑦(−2,3), −1〉 

= 〈6(−2), −2, −1〉 

= 〈−12, −2, −1〉. 

 

The xy-plane has two “convenient” normal vectors, the positive z-axis 

represented by the vector 𝐳+ = 〈0,0,1〉 and the negative z-axis represented by 

the vector 𝐳− = 〈0,0, −1〉. Since n points in the direction of the negative z-axis, 

we will compare n to 𝐳−. 

 

Recall that the angle between two planes is the same as the angle between its 

normal vectors, and that two planes always meet acutely (except when they are 

orthogonal). Thus, to find the angle between the xy-plane and the plane of 

tangency, it is sufficient to determine the angle between the two normal vectors. 

 

The angle between the two vectors is 

 

𝜃 = cos−1 (
𝐧 ⋅ 𝐳−

|𝐧||𝐳−|
) = cos−1 (

1

√149
) ≈ 85.3°. 

 

Therefore, the angle that the tangent plane of 𝑓(𝑥, 𝑦) = 3𝑥2 − 2𝑦, when 𝑥0 =
−2 and 𝑦0 = 3, makes with the xy-plane, is 85.3°. 

 

         

 

Example 27.7: A surface is defined parametrically by 𝐫(𝑢, 𝑣) = 〈2𝑢 + 𝑣, 𝑣 −
3𝑢, 𝑢𝑣〉. Find the equation of the tangent plane at the point (4, −11, −6). 

 

Solution: Observe that 𝑥(𝑢, 𝑣) = 2𝑢 + 𝑣, 𝑦(𝑢, 𝑣) = 𝑣 − 3𝑢 and 𝑧(𝑢, 𝑣) = 𝑢𝑣. 

From the point (4, −11, −6), we can infer that 𝑥 = 2𝑢 + 𝑣 = 4 and 𝑦 = 𝑣 −
3𝑢 = −11. This is a system: 

 

2𝑢 + 𝑣 = 4 

−3𝑢 + 𝑣 = −11. 
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Solving the system, we find that 𝑢 = 3 and 𝑣 = −2. Note that this also checks 

for 𝑧 = 𝑢𝑣 = (2)(−3) = −6. 

 

We now need to find a vector n normal to the surface. Taking partial derivatives 

of r, we have 

 

𝐫𝑢(𝑢, 𝑣) = 〈2, −3, 𝑣〉    and    𝐫𝑣(𝑢, 𝑣) = 〈1,1, 𝑢〉. 
 

Evaluating at 𝑢 = 3 and 𝑣 = −2, we have 

 

𝐫𝑢(3, −2) = 〈2, −3, −2〉    and    𝐫𝑣(3, −2) = 〈1,1,3〉. 
 

Thus, the normal vector n is 

 

𝐧 = 𝐫𝑢 × 𝐫𝑣 = 〈−7, −8,5〉. 
 

The plane tangent to the surface 𝐫(𝑢, 𝑣) = 〈2𝑢 + 𝑣, 𝑣 − 3𝑢, 𝑢𝑣〉 at the point 
(4, −11, −6) is 

 

−7(𝑥 − 4) − 8(𝑦 − (−11)) + 5(𝑧 − (−6)) = 0. 

 

Simplifying, we have 

 

−7(𝑥 − 4) − 8(𝑦 + 11) + 5(𝑧 + 6) = 0 

−7𝑥 + 28 − 8𝑦 − 88 + 5𝑧 + 30 = 0 

−7𝑥 − 8𝑦 + 5𝑧 = 30. 
 

         

 
 

See an error? Have a suggestion? 
Please see www.surgent.net/vcbook 
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28. Differentials 
 

The equation of the tangent plane to a point (𝑥0, 𝑦0, 𝑧0) on the surface of 𝑧 =
𝑓(𝑥, 𝑦) is given by 

 

𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0) − (𝑧 − 𝑧0) = 0. 

 

Add (𝑧 − 𝑧0) to both sides: 

 
(𝑧 − 𝑧0) = 𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0). 

 

Now, view the expression 𝑧 − 𝑧0 as a change in z, written ∆𝑧. Do the same for 

(𝑥 − 𝑥0) and (𝑦 − 𝑦0). We have 

 

∆𝑧 = 𝑓𝑥(𝑥0, 𝑦0)∆𝑥 + 𝑓𝑦(𝑥0, 𝑦0)∆𝑦. 

 

For sufficiently small changes in the variables, we can assume that 𝑑𝑥 ≈ ∆𝑥, 

and so on. Thus, the above equation can be written using differentials: 

 

𝑑𝑧 = 𝑓𝑥(𝑥0, 𝑦0)𝑑𝑥 + 𝑓𝑦(𝑥0, 𝑦0)𝑑𝑦. 

 

We can use this formula to study the effect that small changes in x and y have 

on z.  

 

         

 

Example 28.1: The exterior of a circular cylindrical tank is measured to be 4 

meters in radius and 5 meters high. Assume that the measurements have a 

tolerance of 0.02 meters for the radius and 0.03 meters for the height. What 

effect do the possible variances in radius or height have on the volume of the 

tank? 

 

Solution: The volume is given by 𝑉(𝑟, ℎ) = 𝜋𝑟2ℎ, where r is the radius of the 

base, and h is the vertical height. The differentials 𝑑𝑉, 𝑑𝑟 and 𝑑ℎ are related by 

the formula 

 

𝑑𝑉 = 𝑉𝑟(𝑟0, ℎ0)𝑑𝑟 + 𝑉ℎ(𝑟0, ℎ0)𝑑ℎ. 
= 2𝜋𝑟0ℎ0 𝑑𝑟 + 𝜋𝑟0

2 𝑑ℎ 

= 2𝜋(4)(5)(0.02) + 𝜋(4)2(0.03) 

= 40𝜋(0.02) + 16𝜋(0.03). 
= 4.02 cubic meters. 

 

It might be surprising that being off by just 0.02 meters (2 cm) when measuring 

the radius and 0.03 meters (3 cm) when measuring the height would translate 

into a change of approximately 4 cubic meters for the volume. 
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However, we can calculate exact volumes for these measurements and compare. 

If the radius is exactly 4 meters and the height exactly 5 meters, the presumptive 

volume is 

 

𝑉(4,5) = 𝜋(4)2(5) = 251.327 m3. 
 

If both measures are “low”, that is, r = 3.98 meters and h = 4.97 meters, then the 

volume is 

 

𝑉(3.98,4.97) = 𝜋(3.98)2(4.97) = 247.327 m3. 
 

The difference between the two volume figures is 247.327 − 251.327 =
−4 m3. Thus, measuring low results in approximately 4 fewer cubic meters of 

volume. 

 

If both measures are “high”, r = 4.02 and h = 5.03, then the volume is  

 

𝑉(4.02,5.03) = 𝜋(4.02)2(5.03) = 255.37 m3. 
 

The difference between this higher figure and the presumed volume figure is 

255.37 − 251.327 = 4.043 m3. Again, the change in volume is roughly 4 

cubic meters. 

 

         

 

Example 28.2: The surface area of a rectangular box of length l, width w and 

height h is given by 𝐴(𝑙, 𝑤, ℎ) = 2(𝑤𝑙 + 𝑤ℎ + 𝑙ℎ). Suppose workers measure 

the length to be 20 feet, the width 8 feet and the height 5 feet. If the tolerance of 

the surface area is to be no more than 6 square feet (low or high), what should 

the tolerances on the length, width and height be, assuming all to be the same? 

 

Solution: Written in differential form, 𝑑𝐴 is related to 𝑑𝑙, 𝑑𝑤 and 𝑑ℎ by  

 

𝑑𝐴 = 𝐴𝑙𝑑𝑙 + 𝐴𝑤𝑑𝑤 + 𝐴ℎ𝑑ℎ 

= 2(𝑤 + ℎ)𝑑𝑙 + 2(𝑙 + ℎ)𝑑𝑤 + 2(𝑙 + 𝑤)𝑑ℎ. 
 

We assume that 𝑑𝑙 = 𝑑𝑤 = 𝑑ℎ. Substituting, we have 

 

6 = 2(20 + 8)𝑑𝑙 + 2(20 + 5)𝑑𝑤 + 2(8 + 5)𝑑ℎ 

6 = 56𝑑𝑙 + 50𝑑𝑤 + 26𝑑ℎ 

6 = 132𝑑𝑙    (since 𝑑𝑙 = 𝑑𝑤 = 𝑑ℎ) 

 

Thus, 𝑑𝑙 =
6

132
≈ 0.045 feet, or slightly over half an inch, in allowable 

tolerance. If the workers can keep their measurements for the length, width and 

height within this small tolerance, the actual surface area should not vary by 

more than 6 square feet from the presumptive surface area. 
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Example 28.3: A conical pyramid of sand has a circular base with radius r = 6 

meters and a height h = 4 meters. If sand is added to the pile in such a way that 

the change in radius and the change in height are the same, what will have more 

of an effect on the volume, a change in the radius or a change in the height? 

 

Solution: The volume of a conical pyramid is given by 𝑉(𝑟, ℎ) =
1

3
𝜋𝑟2ℎ, where 

r is the radius of the base, and h is the vertical height. In differential form, we 

have 

 

𝑑𝑉 = (
2

3
𝜋𝑟ℎ)  𝑑𝑟 + (

1

3
𝜋𝑟2)  𝑑ℎ. 

 

Evaluated at r = 6 meters and a height h = 4 meters, we have 

 

𝑑𝑉 = (
2

3
𝜋(6)(4))  𝑑𝑟 + (

1

3
𝜋(6)2)  𝑑ℎ = 16𝜋 𝑑𝑟 + 12𝜋 𝑑ℎ. 

 

Assuming that 𝑑𝑟 = 𝑑ℎ, then since 16𝜋 > 12𝜋, a change in the radius will have 

a greater effect on the volume than an equal change in height would.  

 

         

 

Taking the generic differential form for 𝑧 = 𝑓(𝑥, 𝑦), which is 𝑑𝑧 =
𝑓𝑥(𝑥0, 𝑦0)𝑑𝑥 + 𝑓𝑦(𝑥0, 𝑦0)𝑑𝑦, we can divide both sides by dt, in effect forming 

a related rate in which x, y and z are functions of a parameter variable t. We 

use the Chain Rule and obtain: 

 
𝑑𝑧

𝑑𝑡
= 𝑓𝑥(𝑥0, 𝑦0)

𝑑𝑥

𝑑𝑡
+ 𝑓𝑦(𝑥0, 𝑦0)

𝑑𝑦

𝑑𝑡
 . 

 

Example 28.4: A circular cylinder is being heated in such a way that its radius 

is increasing at the rate of 0.05 feet/minute and the height is shrinking at the rate 

of 0.02 feet/minute. Find the rate at which the surface area is changing when its 

base radius is 3 feet and the height is 7 feet. 

 

Solution: Using the formula for surface area of a circular cylinder, 𝐴(𝑟, ℎ) =
2𝜋𝑟ℎ + 2𝜋𝑟2, we differentiate each term with respect to t: 

 
𝑑𝐴

𝑑𝑡
= 𝐴𝑟

𝑑𝑟

𝑑𝑡
+ 𝐴ℎ

𝑑ℎ

𝑑𝑡
= (2𝜋ℎ + 4𝜋𝑟)

𝑑𝑟

𝑑𝑡
+ (2𝜋𝑟)

𝑑ℎ

𝑑𝑡
 . 

 

Substituting, we have 

 

𝑑𝐴

𝑑𝑡
= (2𝜋(7) + 4𝜋(3))(0.05) + (2𝜋(3))(−0.02) ≈ 3.71 

feet2

minute
 . 

 


