
289  

 

50. Surface Area Integrals 
 

Let 𝐫(𝑢, 𝑣) = 〈𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)〉 parametrically describe a surface S in 𝑅3. Then its surface 

area over a region of integration R is given by 

 

∬ 𝑑𝑆
𝑆

= ∬ |𝐫𝑢 × 𝐫𝑣| 𝑑𝐴
𝑅

. 

 

If the surface is defined explicitly, in of the form 𝑧 = 𝑓(𝑥, 𝑦), then the surface can be parametrized 

as 

 

𝐫(𝑥, 𝑦) = 〈𝑥, 𝑦, 𝑓(𝑥, 𝑦)〉. 
 

Its partial derivatives are  

 

𝐫𝑥 = 〈1,0, 𝑓𝑥(𝑥, 𝑦)〉    and     𝐫𝑦 = 〈0,1, 𝑓𝑦(𝑥, 𝑦)〉. 
 

The cross product is  

 

𝐫𝑥 × 𝐫𝑦 = 〈−𝑓𝑥(𝑥, 𝑦), −𝑓𝑦(𝑥, 𝑦),1〉, 
 

and the magnitude of this cross product is  

 

|𝐫𝑥 × 𝐫𝑦| = √(−𝑓𝑥(𝑥, 𝑦))
2

+ (−𝑓𝑦(𝑥, 𝑦))
2

+ 12 = √(𝑓𝑥(𝑥, 𝑦))
2

+ (𝑓𝑦(𝑥, 𝑦))
2

+ 1. 

 

Thus, in the case of a surface being described by an explicitly-defined function, the surface area 

of the surface S over a region of integration R is 

 

∬ 𝑑𝑆
𝑆

= ∬ √(𝑓𝑥(𝑥, 𝑦))
2

+ (𝑓𝑦(𝑥, 𝑦))
2

+ 1 𝑑𝑥 𝑑𝑦
𝑅

. 
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Example 50.1: Find the surface area of the plane with intercepts (6,0,0), (0,4,0) and (0,0,10) that 

is in the first octant. 

 

Solution: The plane’s equation is 
𝑥

6
+

𝑦

4
+

𝑧

10
= 1, or 10𝑥 + 15𝑦 + 6𝑧 = 60. Below is a sketch of 

the surface S, the plane in the first octant, and its region of integration R in the xy-plane: 

 

 
 

Solving for z, we have 𝑧 = 10 −
5

3
𝑥 −

5

2
𝑦. Therefore, the plane can be written parametrically:  

 

𝐫(𝑥, 𝑦) = ⟨𝑥, 𝑦, 10 −
5

3
𝑥 −

5

2
𝑦⟩. 

 

Its partial derivatives are 𝐫𝑥 = ⟨1,0, −
5

3
⟩ and 𝐫𝑦 = ⟨0,1, −

5

2
⟩, and the cross product is 

 

𝐫𝑥 × 𝐫𝑦 = ⟨
5

3
,
5

2
, 1⟩. 

 

Therefore, the magnitude is 

 

|𝐫𝑥 × 𝐫𝑦| = √(
5

3
)

2

+ (
5

2
)

2

+ 12 = √
361

36
=

19

6
 . 

 

The surface area is 

 

∬ 𝑑𝑆
𝑆

= ∬ |𝐫𝑥 × 𝐫𝑦| 𝑑𝐴
𝑅

=
19

6
∬ 𝑑𝐴

𝑅

. 

 

Note that ∬ 𝑑𝐴
𝑅

 is the area of the region of integration R, which is the “shadow” cast by the plane 

onto the xy-plane, which in this case is a triangle. Using geometry, R’s area is 
1

2
(6)(4) = 12. Thus, 

the surface area of the plane 𝑧 = 10 −
5

3
𝑥 −

5

2
𝑦 in the first octant is 

19

6
(12) = 38 square units. 
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Example 50.2: Find the surface area of the portion of the paraboloid 𝑧 = 9 − 𝑥2 − 𝑦2 that extends 

above the xy-plane. 

 

Solution: The paraboloid is described parametrically by 𝐫(𝑥, 𝑦) = 〈𝑥, 𝑦, 9 − 𝑥2 − 𝑦2〉, and its 

partial derivatives are 𝐫𝑥 = 〈1,0, −2𝑥〉 and 𝐫𝑦 = 〈0,1, −2𝑦〉. Therefore, their cross product is  

 

𝐫𝑥 × 𝐫𝑦 = 〈2𝑥, 2𝑦, 1〉, 
 

and the magnitude of the cross product is 

 

|𝐫𝑥 × 𝐫𝑦| = √(2𝑥)2 + (2𝑦)2 + 12 = √4𝑥2 + 4𝑦2 + 1. 
 

The paraboloid intersects the xy-plane (𝑧 = 0) at a circle of radius 3, centered at the origin, so that 

the region of integration R is given by 𝑥2 + 𝑦2 ≤ 9.  Therefore, the surface area of the paraboloid 

𝑧 = 9 − 𝑥2 − 𝑦2 that extends above the xy-plane is given by 

 

∬ 𝑑𝑆
𝑆

= ∬ √4𝑥2 + 4𝑦2 + 1
𝑅

𝑑𝐴. 

 

In rectangular coordinates, this is a difficult integrand to antidifferentiate. Instead, we use polar 

coordinates to rewrite this surface-area integral in terms of 𝑟 and 𝜃: 

 

∬ √4𝑥2 + 4𝑦2 + 1
𝑅

𝑑𝐴 = ∫ ∫ √4𝑟2 + 1 𝑟 𝑑𝑟
3

0

𝑑𝜃
2𝜋

0

. 

 

The inside integral is evaluated first: 

 

∫ √4𝑟2 + 1 𝑟 𝑑𝑟
3

0

= [
1

12
(4𝑟2 + 1)3 2⁄ ]

0

3

 

=
1

12
(373 2⁄ − 1). 

 

Then, the outside integral is evaluated to find the surface area: 

 

1

12
(373 2⁄ − 1) ∫ 𝑑𝜃

2𝜋

0

=
𝜋

6
(373 2⁄ − 1), or about 117.32 units2. 
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Example 50.3: Find the surface area of the hemisphere 𝑥2 + 𝑦2 + 𝑧2 = 25 such that 𝑥 ≥ 0. 

 

Solution: We can write this explicitly by solving for x: 

 

𝑥 = 𝑓(𝑦, 𝑧) = √25 − 𝑦2 − 𝑧2. 
 

Thus, the hemisphere is parameterized as 

 

𝐫(𝑦, 𝑧) = 〈√25 − 𝑦2 − 𝑧2, 𝑦, 𝑧〉. 
 

The partial derivatives are found first: 

 

𝐫𝑦 = ⟨−
𝑦

√25 − 𝑦2 − 𝑧2
, 1,0⟩   and   𝐫𝑧 = ⟨−

𝑧

√25 − 𝑦2 − 𝑧2
, 0,1⟩. 

 

The cross product is then determined: 

 

𝐫𝑦 × 𝐫𝑧 = ⟨1,
𝑦

√25 − 𝑦2 − 𝑧2
,

𝑧

√25 − 𝑦2 − 𝑧2
⟩ . 

 

Then the magnitude of the cross product is determined and simplified: 

 

|𝐫𝑦 × 𝐫𝑧| = √12 + (
𝑦

√25 − 𝑦2 − 𝑧2
)

2

+ (
𝑧

√25 − 𝑦2 − 𝑧2
)

2

 

= √1 +
𝑦2

25 − 𝑦2 − 𝑧2
+

𝑧2

25 − 𝑦2 − 𝑧2
  

= √
25 − 𝑦2 − 𝑧2

25 − 𝑦2 − 𝑧2
+

𝑦2

25 − 𝑦2 − 𝑧2
+

𝑧2

25 − 𝑦2 − 𝑧2
 

= √
25 − 𝑦2 − 𝑧2 + 𝑦2 + 𝑧2

25 − 𝑦2 − 𝑧2
 

=
5

√25 − 𝑦2 − 𝑧2
 . 
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Thus, the surface area of the hemisphere is 

 

∬
5

√25 − 𝑦2 − 𝑧2
 𝑑𝐴

𝑅

, 

 

where R is the region of integration on the yz-plane, a circle of radius 5 centered at the origin. We 

rewrite this integral in terms of 𝑟 and 𝜃: 

 

5 ∫ ∫
1

√25 − 𝑟2
 𝑟 𝑑𝑟

5

0

𝑑𝜃
2𝜋

0

. 

 

The inside integral is evaluated using u-du substitution: 

 

∫
1

√25 − 𝑟2
 𝑟 𝑑𝑟

5

0

= [−√25 − 𝑟2]
0

5

= 5. 

 

Then the outer integral is evaluated: 

 

5(5) ∫ 𝑑𝜃
2𝜋

0

= 25(2𝜋) = 50𝜋 units2. 

 

Note that the surface area of a sphere of radius 𝑟 is 𝐴 = 4𝜋𝑟2. Thus, the surface area of a 

hemisphere of radius 5 is 
1

2
(4𝜋(5)2) = 50𝜋. An alternative method of this example using 

spherical coordinates is presented next. 

 

         
 

Example 50.4: Use spherical coordinates to find the surface area of 𝑥2 + 𝑦2 + 𝑧2 = 25 where 

𝑥 ≥ 0. 

 

Solution: Since the hemisphere lies “above” the yz-plane. Thus, when describing this hemisphere 

in spherical coordinates, the variable 𝜙 will be reckoned from the positive x-axis, such that 𝜙 = 0 

is the positive x-axis and 𝜙 =
𝜋

2
 is the yz-plane. The radius is fixed, so 𝜌 = 5. The conversions are: 

 

𝑥 = 5 cos 𝜙 ,     𝑦 = 5 sin 𝜙 cos 𝜃 ,      𝑧 = 5 sin 𝜙 sin 𝜃. 
 

Thus, we can describe the parameterize the hemisphere using variables 𝜙 and 𝜃: 

 

𝐫(𝜙, 𝜃) = 〈5 cos 𝜙 , 5 sin 𝜙 cos 𝜃 , 5 sin 𝜙 sin 𝜃 〉,    where    0 ≤ 𝜙 ≤
𝜋

2
   and   0 ≤ 𝜃 ≤ 2𝜋. 

 

The partial derivatives are 

 

𝐫𝜙 = 〈−5 sin 𝜙 , 5 cos 𝜙 cos 𝜃 , 5 cos 𝜙 sin 𝜃〉   and   𝐫𝜃 = 〈0, −5 sin 𝜙 sin 𝜃 , 5 sin 𝜙 cos 𝜃〉. 
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The cross product looks intimidating, but trigonometric identities will help simplify it: 

 

𝐫𝜙 × 𝐫𝜃 = |

𝐢 𝐣 𝐤
−5 sin 𝜙 5 cos 𝜙 cos 𝜃 5 cos 𝜙 sin 𝜃

0 −5 sin 𝜙 sin 𝜃 5 sin 𝜙 cos 𝜃
| 

= |
5 cos 𝜙 cos 𝜃 5 cos 𝜙 sin 𝜃

−5 sin 𝜙 sin 𝜃 5 sin 𝜙 cos 𝜃
| 𝐢 − |

−5 sin 𝜙 5 cos 𝜙 sin 𝜃
0 5 sin 𝜙 cos 𝜃

| 𝐣 + |
−5 sin 𝜙 5 cos 𝜙 cos 𝜃

0 −5 sin 𝜙 sin 𝜃
| 𝐤 

= (25 cos 𝜙 sin 𝜙 cos2 𝜃 + 25 cos 𝜙 sin 𝜙 sin2 𝜃)𝐢 − (−25 sin2 𝜙 cos 𝜃)𝐣 + (25 sin2 𝜙 sin 𝜃)𝐤 

= (25 cos 𝜙 sin 𝜙)𝐢 + (25 sin2 𝜙 cos 𝜃)𝐣 + (25 sin2 𝜙 sin 𝜃)𝐤 

 

The magnitude is found next: 

 

|𝐫𝜙 × 𝐫𝜃| = √(25 cos 𝜙 sin 𝜙)2 + (25 sin2 𝜙 cos 𝜃)2 + (25 sin2 𝜙 sin 𝜃)2 

= √625(cos2 𝜙 sin2 𝜙 + sin4 𝜙 cos2 𝜃 + sin4 𝜙 sin2 𝜃) 

= 25√cos2 𝜙 sin2 𝜙 + sin4 𝜙 (cos2 𝜃 + sin2 𝜃) 

= 25√cos2 𝜙 sin2 𝜙 + sin4 𝜙 

= 25√sin2 𝜙 (cos2 𝜙 + sin2 𝜙) 

= 25√sin2 𝜙 

= 25 sin 𝜙. 

 

Therefore, the surface area of the hemisphere is 

 

∫ ∫ 25 sin 𝜙 
𝜋 2⁄

0

𝑑𝜙
2𝜋

0

 𝑑𝜃. 

 

The inside integral is evaluated: 

 

∫ 25 sin 𝜙 
𝜋 2⁄

0

𝑑𝜙 = [−25 cos 𝜙]0
𝜋 2⁄

 

= −25 (cos
𝜋

2
− cos 0) 

= −25(0 − 1) 

= 25. 

 

Then, the integral with respect to 𝜃 is evaluated: 

 

∫ 25
2𝜋

0

 𝑑𝜃 = 25(2𝜋) = 50𝜋. 
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Example 50.5: A circular cylinder 𝑥2 + 𝑦2 = 36 intersects the plane 𝑥 + 𝑧 = 10. Find the surface 

area of this plane that is cut off by the cylinder, and then find the surface area of the cylinder that 

is bounded below by the xy-plane and above by the plane 𝑥 + 𝑧 = 10. 

 

 
 

Solution: For the plane 𝑥 + 𝑧 = 10, we solve for 𝑧, getting 𝑧 = 10 − 𝑥. Thus, the plane is 

parametrized by 

 

𝐫(𝑥, 𝑦) = 〈𝑥, 𝑦, 10 − 𝑥〉. 
 

Note that we use y as a parameter since the plane does extend into the y direction, even though 

values of y do not govern the values of z. (If it helps, think of the plane as 𝑥 + 0𝑦 + 𝑧 = 10). 

 

The partial derivatives are 𝐫𝑥 = 〈1,0, −1〉 and 𝐫𝑦 = 〈0,1,0〉, and their cross product is 

 

𝐫𝑥 × 𝐫𝑦 = 〈1,0,1〉, 
 

with magnitude |𝐫𝑥 × 𝐫𝑦| = √2. Thus, the surface area of the plane is 

 

∬ |𝐫𝑥 × 𝐫𝑦| 𝑑𝐴
𝑅

= √2 ∬ 𝑑𝐴
𝑅

, 

 

where ∬ 𝑑𝐴
𝑅

 is the area of the region of integration R. Since R is a circle of radius 6, we have 

∬ 𝑑𝐴
𝑅

= 36𝜋, so that the surface area of the plane is 36𝜋√2 units2. 
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The surface area of the cylinder bounded by the xy-plane (z = 0) and the plane 𝑥 + 𝑧 = 10 (written 

z = 10 – x = 10 − 6 cos 𝜃) is found in a similar manner.  First, we parametrize the cylinder: 

 

𝐫(𝜃, 𝑧) = 〈6 cos 𝜃 , 6 sin 𝜃 , 𝑧〉,   where   0 ≤ 𝜃 ≤ 2𝜋   and    0 ≤ 𝑧 ≤ 10 − 6 cos 𝜃. 
 

The partial derivatives are 𝐫𝜃 = 〈−6 sin 𝜃 , 6 cos 𝜃 , 0〉 and 𝐫𝑧 = 〈0,0,1〉, and their cross product is 

 

𝐫𝜃 × 𝐫𝑧 = 〈6 cos 𝜃 , 6 sin 𝜃 , 0〉. 
 

The magnitude of the cross product is 

 

|𝐫𝜃 × 𝐫𝑧| = √(6 cos 𝜃)2 + (6 sin 𝜃)2 + 02 

= √36(cos2 𝜃 + sin2 𝜃) 

= √36 

= 6. 

 

 Thus, the surface area of the cylinder is 

 

 

∫ ∫ 6 𝑑𝑧
10−6 cos 𝜃

0

𝑑𝜃
2𝜋

0

= 6 ∫ ∫ 𝑑𝑧
10−6 cos 𝜃

0

𝑑𝜃
2𝜋

0

 

= 6 ∫ (10 − 6 cos 𝜃) 𝑑𝜃
2𝜋

0

 

= 6[10𝜃 − 6 sin 𝜃]0
2𝜋 

= 120𝜋 units2. 

 

         
 

  



297  

 

Example 50.6: Find the surface area of the cone 𝑧 = √𝑥2 + 𝑦2 where 1 ≤ 𝑧 ≤ 4. This is called a 

band. The solid formed by removing the apex from any conical or pyramidal object is called a 

frustum. 

 

 
 

Solution: We have 

 

𝐫(𝑥, 𝑦) = 〈𝑥, 𝑦, √𝑥2 + 𝑦2〉. 
 

We will determine the bounds of integration in a moment. 

 

The partial derivatives are  

 

𝐫𝑥 = 〈1,0,
𝑥

√𝑥2 + 𝑦2
〉    and   𝐫𝑦 = 〈0,1,

𝑦

√𝑥2 + 𝑦2
〉. 

 

The cross product is 

 

𝐫𝑥 × 𝐫𝑦 =
|

|

𝐢 𝐣 𝐤

1 0
𝑥

√𝑥2 + 𝑦2

0 1
𝑦

√𝑥2 + 𝑦2

|

|
 

= ||

0
𝑥

√𝑥2 + 𝑦2

1
𝑦

√𝑥2 + 𝑦2

|| 𝐢 − ||

1
𝑥

√𝑥2 + 𝑦2

0
𝑦

√𝑥2 + 𝑦2

|| 𝐣 + |
1 0
0 1

| 𝐤 

= −
𝑥

√𝑥2 + 𝑦2
𝐢 −

𝑦

√𝑥2 + 𝑦2
𝐣 + 𝐤. 
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The magnitude is 

 

|𝐫𝑥 × 𝐫𝑦| = √(−
𝑥

√𝑥2 + 𝑦2
)

2

+ (−
𝑦

√𝑥2 + 𝑦2
)

2

+ 12 

= √
𝑥2

𝑥2 + 𝑦2
+

𝑦2

𝑥2 + 𝑦2
+ 1 

= √
𝑥2

𝑥2 + 𝑦2
+

𝑦2

𝑥2 + 𝑦2
+

𝑥2 + 𝑦2

𝑥2 + 𝑦2
 

= √
𝑥2 + 𝑦2 + 𝑥2 + 𝑦2

𝑥2 + 𝑦2
 

= √
2(𝑥2 + 𝑦2)

𝑥2 + 𝑦2
= √2 . 

 

The region of integration R is the area between two concentric circles, one of radius 1 and the other 

of radius 4. This is the “shadow” cast by the side of the conical band onto the xy-plane. Thus, the 

surface area of the band on the cone 𝑧 = √𝑥2 + 𝑦2 where 1 ≤ 𝑧 ≤ 4 is given by  

 

∬ √2
𝑅

 𝑑𝐴 = √2 ∬ 𝑑𝐴
𝑅

 

= √2(𝜋(4)2 − 𝜋(1)2) 

= 15𝜋√2 units2. 

 

We used geometry to determine the area between the two circles, represented by ∬ 𝑑𝐴
𝑅

. 

 

In the following example, this problem is evaluated again using cylindrical coordinates. 

 

         
 

  



299  

 

Example 50.7: Use cylindrical coordinates to find the surface area of the cone 𝑧 = √𝑥2 + 𝑦2 

where 1 ≤ 𝑧 ≤ 4. 

 

Solution: In rectangular coordinates, the cone is parameterized as 

 

𝐫(𝑥, 𝑦) = 〈𝑥, 𝑦, √𝑥2 + 𝑦2〉. 
 

Letting 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃, we have 

 

𝐫(𝑟, 𝜃) = 〈𝑟 cos 𝜃 , 𝑟 sin 𝜃 , √(𝑟 cos 𝜃)2 + (𝑟 sin 𝜃)2〉 = 〈𝑟 cos 𝜃 , 𝑟 sin 𝜃 , 𝑟〉. 
 

The bounds are 1 ≤ 𝑟 ≤ 4 and 0 ≤ 𝜃 ≤ 2𝜋. 

 

The partial derivatives are 

 

𝐫𝜃 = 〈−𝑟 sin 𝜃 , 𝑟 cos 𝜃 , 0〉   and   𝐫𝑟 = 〈cos 𝜃 , sin 𝜃 , 1〉. 
 

The cross product is  

 

𝐫𝜃 × 𝐫𝑟 = |
𝐢 𝐣 𝐤

−𝑟 sin 𝜃 𝑟 cos 𝜃 0
cos 𝜃 sin 𝜃 1

| 

= 〈𝑟 cos 𝜃 , 𝑟 sin 𝜃 , −𝑟 sin2 𝜃 − 𝑟 cos2 𝜃〉 

= 〈𝑟 cos 𝜃 , 𝑟 sin 𝜃 , −𝑟〉. 

 

The magnitude is 

 

|𝐫𝜃 × 𝐫𝑟| = √(𝑟 cos 𝜃)2 + (𝑟 sin 𝜃)2 + (−𝑟)2 

= √𝑟2(cos2 𝜃 + sin2 𝜃) + 𝑟2 

= √𝑟2 + 𝑟2 

= 𝑟√2. 
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The surface area is given by 

 

∬ |𝐫𝜃 × 𝐫𝑟|
𝑅

 𝑑𝐴 = ∫ ∫ 𝑟√2 𝑑𝑟
4

1

𝑑𝜃
2𝜋

0

 

= √2 ∫ ∫ 𝑟 𝑑𝑟
4

1

𝑑𝜃
2𝜋

0

 

= √2 ∫ [
𝑟2

2
]

1

4

𝑑𝜃
2𝜋

0

 

= √2 ∫
15

2
 𝑑𝜃

2𝜋

0

 

=
15

2
√2 ∫ 𝑑𝜃

2𝜋

0

 

=
15

2
√2(2𝜋) 

= 15𝜋√2 units2. 

 

         

 

Example 50.8: Find the surface area of 𝐫(𝑢, 𝑣) = 〈𝑢 + 𝑣, 𝑢 − 𝑣, 2𝑢𝑣〉 over the circular region  

𝑢2 + 𝑣2 ≤ 9.   

 

Solution: Taking partial derivatives of r, we have 

 

𝐫𝑢(𝑢, 𝑣) = 〈1,1,2𝑣〉    and    𝐫𝑣(𝑢, 𝑣) = 〈1, −1,2𝑢〉. 
 

Thus, 𝐫𝑢 × 𝐫𝑣 = 〈2𝑢 + 2𝑣, 2𝑣 − 2𝑢, −2〉, and its magnitude is 

 

|𝐫𝑢 × 𝐫𝑣| = √(2𝑢 + 2𝑣)2 + (2𝑣 − 2𝑢)2 + (−2)2 

= √4𝑢2 + 8𝑢𝑣 + 4𝑣2 + 4𝑣2 − 8𝑢𝑣 + 4𝑢2 + 4 

= √4 + 8𝑢2 + 8𝑣2. 

 

The surface area is given by 

 

∬ |𝐫𝑢 × 𝐫𝑣|
𝑅

 𝑑𝐴 = ∬ √4 + 8𝑢2 + 8𝑣2

𝑅

 𝑑𝑢 𝑑𝑣. 
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Converting to polar coordinates, and noting that the region of integration is inside a circle of radius 

3, we have 

 

∬ √4 + 8𝑢2 + 8𝑣2

𝑅

 𝑑𝑢 𝑑𝑣 = ∫ ∫ √4 + 8𝑟2 𝑟 𝑑𝑟
3

0

𝑑𝜃
2𝜋

0

. 

 

The inside integral is evaluated: 

 

∫ √4 + 8𝑟2 𝑟 𝑑𝑟
3

0

= [
1

24
(4 + 8𝑟2)3 2⁄ ]

0

3

=
1

24
(763 2⁄ − 8). 

 

The outside integral is then evaluated: 

 

∫ (
1

24
(763 2⁄ − 8))  𝑑𝜃

2𝜋

0

=
1

24
(763 2⁄ − 8) ∫ 𝑑𝜃

2𝜋

0

 

=
𝜋

12
(763 2⁄ − 8) 

≈ 171.36 units2. 

 

         
 

The generic form of the surface-area integral (in parameters u and v), ∬ |𝐫𝑢 × 𝐫𝑣| 𝑑𝐴
𝑅

, does not 

distinguish whether u and v are rectangular, polar, cylindrical or spherical coordinates. Thus, the 

area differential is always 𝑑𝐴 = 𝑑𝑢 𝑑𝑣.  

 

In some examples, we used a non-rectangular coordinate system to set up the integral. In such a 

case, we do not write in the usual Jacobian associated with that system. See Examples 50.4 and 

50.7 for two such cases. 

 

However, if after setting it up in a particular coordinate system, we decide to integrate it in a 

different coordinate system, then we must make all the necessary substitutions and then include 

the Jacobian. See Examples 50.2 and 50.8 for two such cases where we did include the Jacobian. 

 

 


