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40. Spherical Coordinate System 
 
A point 𝑃 = (𝑥, 𝑦, 𝑧) described by rectangular coordinates in 𝑅3 can also be 

described by three independent variables, 𝜌 (rho), 𝜃 and 𝜙 (phi), whose 

meanings are given below: 

 

𝜌: the distance from the origin to 𝑃. 

 

𝜃: the angle from the positive x-axis to the line connecting the origin to the 

point (𝑥, 𝑦, 0). 

 

𝜙: the angle from the positive z-axis to the line connecting the origin to 𝑃. 

 

Descriptively, 𝜌 (rho) is the spherical radius, 𝜃 is the “sweep” or “azimuth” 

angle of the point’s projection onto the xy-plane, and 𝜙 (phi) is the “lean” angle 

of the point relative to the positive z-axis. 

 

 
 

A point P is shown in 𝑅3. A line connects the origin to P (above left). This line 

has length 𝜌. This same line also “leans” at an angle of 𝜙 radians, relative to the 

positive z-axis (above right). Furthermore, a line is drawn from the origin to the 

point’s projection onto the xy-plane, (𝑥, 𝑦, 0). This line is at an angle of 𝜃 

radians relative to the positive x-axis in the counterclockwise manner. The use 

of 𝜃 here is identical to its usage in the polar and cylindrical coordinate systems 

and is confined to the xy-plane. 

 

These three variables comprise the spherical coordinate system and are best 

used to describe regions in 𝑅3 that are spheres, or parts of a sphere. For such 

regions, the bounds of 𝜌, 𝜃 and 𝜙 will be constants. The common restrictions 

on 𝜌, 𝜃 and 𝜙 are: 

 
𝜌 ≥ 0, 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜙 ≤ 𝜋. 
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Any point in 𝑅3 can be described by spherical coordinates (𝜌, 𝜃, 𝜙) that meet 

the restrictions stated above. 

 

The variable 𝜙 can be thought of as the “lean” of the line connecting the origin 

to P relative to the positive z-axis.  If 𝜙 = 0, then P lies on the positive z-axis. 

If 𝜙 =
𝜋

2
, then P lies on the xy-plane, which is at right angles to the positive z-

axis, and if 𝜙 = 𝜋, then P lies on the negative z-axis. 

 

The conversion formulas between rectangular coordinates (𝑥, 𝑦, 𝑧) and 

spherical coordinates (𝜌, 𝜃, 𝜙) are: 

 

𝜌 = √𝑥2 + 𝑦2 + 𝑧2, 𝜃 = arctan (
𝑦

𝑥
) , 𝜙 = arctan (

√𝑥2 + 𝑦2

𝑧
) . 

 
𝑥 = 𝜌 sin 𝜙 cos 𝜃 , 𝑦 = 𝜌 sin 𝜙 sin 𝜃 , 𝑧 = 𝜌 cos 𝜙. 

 

 •  •  •  •  

 

A Review of the Arctangent Operator,  

or Getting your 𝜽 and 𝝓 angles correct! 

 

Assume x and y are rectangular coordinates in the xy-plane, and that 𝜃 is the 

angle from the positive x-axis to the line connecting the origin to the point (x,y), 

given by 𝜃 = arctan(𝑦 𝑥⁄ ). When calculating the angle 𝜃, we must be careful 

in handling the result as given by a calculator. Recall that the arctangent operator 

only returns values in the first quadrant (if 𝑦 𝑥⁄  is positive) or fourth quadrants 

(if 𝑦 𝑥⁄  is negative). 

 

If both x and y are positive (in Quadrant 1), then 𝑦 𝑥⁄  is positive, so that 𝜃 =

arctan (
𝑦

𝑥
) is in the interval 0 ≤ 𝜃 ≤

𝜋

2
 (the first quadrant). 

 

Example: 𝑥 = 3, 𝑦 = 2, so that 𝜃 = tan−1 (
2

3
) ≈ 0.59 radians. 

 

 
 

What needs to be done: Nothing. The arctan operator returned a value in 

the Quadrant-I, as expected. The correct answer is 𝜃 = 0.59 radians. 
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If x is negative and y is positive (in Quadrant II), then 𝑦 𝑥⁄  is negative, but 𝜃 =

arctan(𝑦 𝑥⁄ ) is in the interval −
𝜋

2
≤ 𝜃 ≤ 0 (the fourth quadrant). We must add 

𝜋 to this result to place the angle in the interval  
𝜋

2
≤ 𝜃 ≤ 𝜋, the second quadrant. 

 

Example: 𝑥 = −3, 𝑦 = 2, so that 𝜃 = tan−1 (
2

−3
) ≈ −0.59 radians. This 

result is in Quadrant-IV. We need to get it in Quadrant-II. 

 

 
 

What needs to be done: The value –0.59 is in Quadrant -IV, so we add 𝜋 

to place the angle into Quadrant-II. The correct answer is 𝜃 = −0.59 +
3.14 = 2.55 radians. 

 

If both x and y are negative (in Quadrant 3), then 𝑦 𝑥⁄  is positive, but 𝜃 =

arctan(𝑦 𝑥⁄ ) is in the interval 0 ≤ 𝜃 ≤
𝜋

2
 (the first quadrant). Thus, we add 𝜋 to 

this result to place the angle in the interval 𝜋 ≤ 𝜃 ≤
3𝜋

2
, the third quadrant. 

 

Example: 𝑥 = −3, 𝑦 = −2, so that 𝜃 = tan−1 (
−2

−3
) = tan−1 (

2

3
) ≈ 0.59. 

This result is in Quadrant-I. We need to get it in Quadrant-III. 

 

 
 

What needs to be done: The value 0.59 is in Quadrant-I, so add 𝜋 to place 

the angle into Quadrant-III. The correct answer is 𝜃 = 0.59 + 3.14 = 3.73 

radians. 
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If x is positive and y is negative (in Quadrant 4), then 𝑦 𝑥⁄  is negative, so that 

𝜃 = arctan(𝑦 𝑥⁄ ) is in the interval −
𝜋

2
≤ 𝜃 ≤ 0 (the fourth quadrant). This is 

usually acceptable. However, if we desire that the angle be positive, then we add 

2𝜋 to the result. 

 

Example: 𝑥 = 3, 𝑦 = −2, so that 𝜃 = tan−1 (
−2

3
) ≈ −0.59. This result is 

inn Quadrant 4. 

 

 
 

 

What needs to be done: Nothing. The value is in quadrant IV, as expected. 

However, if the angle is to be stated as a positive number, add 2𝜋. Thus, 

𝜃 = −0.59 + 6.28 = 5.69 radians. 

 

 

For 𝜙, the process is simpler. If the point lies above the xy-plane (that is, z is 

positive), then the result given by 𝜙 = arctan(√𝑥2 + 𝑦2 𝑧⁄ ) will be in the 

interval 0 ≤ 𝜙 ≤
𝜋

2
 and no adjustments need to be made. If z is negative, then 𝜙 

must be in the interval 
𝜋

2
≤ 𝜙 ≤ 𝜋. However, the expression 

arctan(√𝑥2 + 𝑦2 𝑧⁄ ) will give a value in −
𝜋

2
≤ 𝜙 ≤ 0, in which case, add 𝜋 to 

place the angle 𝜙 in the desired interval of  
𝜋

2
≤ 𝜙 ≤ 𝜋. 

 

 •  •  •  •  

 

 

Example 40.1: Convert the rectangular coordinate (2,5,3) into spherical 

coordinates. 

 

Solution: Note that this point lies above the first quadrant of the xy-plane. Thus, 

we expect that both 𝜃 and 𝜙 will be in the intervals 0 < 𝜃 <
𝜋

2
 and 0 < 𝜙 <

𝜋

2
.  

We have 

 

𝜌 = √22 + 52 + 32 = √38, 

𝜃 = arctan (
5

2
) ≈ 1.1903 radians, 

𝜙 = arctan (
√22 + 52

3
) ≈ 1.0625 radians. 

 

Since 
𝜋

2
≈ 1.571, the values for 𝜃 and 𝜙 are plausible. 
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Example 40.2: Convert the rectangular coordinate (−3, −4, −2) into spherical 

coordinates. 

 

Solution: This point lies below the third quadrant of the xy-plane. We expect 

that 𝜃 will be in the interval 𝜋 < 𝜃 <
3𝜋

2
 and that 𝜙 will be in the interval 

𝜋

2
<

𝜙 < 𝜋. We have 

 

𝜌 = √(−3)2 + (−4)2 + (−2)2 = √29, 

𝜃 = arctan (
−4

−3
) = arctan (

4

3
) ≈ 0.9273 radians, 

𝜙 = arctan (
√(−3)2 + (−4)2

−2
) = arctan (−

5

2
) ≈ −1.1903 radians. 

 

The current value for 𝜃 is incorrect. The value of 0.9273 radians places 𝜃 in the 

first quadrant. Thus, add 𝜋, so that the correct value for 𝜃 is 0.9273 + 3.1416 ≈ 

4.0689 radians, which is in the in the interval 𝜋 < 𝜃 <
3𝜋

2
, as desired.  

 

Furthermore, we can rewrite 𝜙 so that it is in the interval 
𝜋

2
< 𝜙 < 𝜋.  We add 

𝜋 to 𝜙 ≈ −1.1903, getting  –1.1903 + 3.1416  ≈ 1.9513 radians, which is an 

angle in the desired interval. 

 

To summarize, the point (−3, −4, −2) in rectangular coordinates is equivalent 

to the point (𝜌, 𝜃, 𝜙) = (√29, 4.0689, 1.9513) in spherical coordinates. 

 

 •  •  •  •  

 

 

Example 40.3: Describe the solid sphere of radius 2 centered at the origin using 

spherical coordinates. 

 

Solution: The solid sphere of radius 2 is described by 

 
0 ≤ 𝜌 ≤ 2, 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜙 ≤ 𝜋. 

 

 •  •  •  •  

 

Example 40.4: Describe the solid hemisphere of radius 4, bounded by the xy-

plane, extending into the negative z direction. 

 

Solution: We have  

 

0 ≤ 𝜌 ≤ 4, 0 ≤ 𝜃 ≤ 2𝜋,
𝜋

2
≤ 𝜙 ≤ 𝜋. 
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Note that the bounds 
𝜋

2
≤ 𝜙 ≤ 𝜋 indicate that points in this region lie below the 

xy-plane.  

 

 •  •  •  •  

 

Example 40.5: Describe 𝜌 = 3, with 0 ≤ 𝜃 ≤ 2𝜋 and 0 ≤ 𝜙 ≤ 𝜋. 

 

Solution: This is a sphere of radius 3, centered at the origin. Had we set 0 ≤
𝜌 ≤ 3, this would describe the solid sphere of radius 3. 

 

Converting back to rectangular coordinates, this same spherical surface is given 

by 

 

𝑥 = 3 sin 𝜙 cos 𝜃 

𝑦 = 3 sin 𝜙 sin 𝜃 

𝑧 = 3 cos 𝜙, 
 

with 0 ≤ 𝜃 ≤ 2𝜋 and 0 ≤ 𝜙 ≤ 𝜋.  

 

 •  •  •  •  

 

Example 40.6: Describe the solid given by 9 ≤ 𝑥2 + 𝑦2 + 𝑧2 ≤ 25, where 𝑥 ≥
0 and 𝑦 ≥ 0, using spherical coordinates. 

 

Solution: Note that x and y are restricted to the first quadrant in the xy-plane, so 

that 𝜃 cannot be greater than 
𝜋

2
. The object is two nested spheres, one of radius 

3 and the other of radius 5, lying above and below the first quadrant of the xy-

plane. Note that z still may be positive or negative. We have 

3 ≤ 𝜌 ≤ 5, 0 ≤ 𝜃 ≤
𝜋

2
, 0 ≤ 𝜙 ≤ 𝜋. 

 

 •  •  •  •  

 

Example 40.7: Given the point P 

defined by spherical coordinates 

(𝜌, 𝜃, 𝜙) = (3,
𝜋

6
,

𝜋

5
), find the reflection 

of P (a) cross the xy-plane, (b) across the 

yz-plane, and (c) across the xz-plane. 

 

Solution: Unlike the rectangular 

coordinate axis system, where we can 

negate certain values within the ordered 

triple to achieve a reflection, we must remember that the point in spherical 

coordinates is partially described by angle measures.  
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a) When P is reflected across the xy-plane, the 𝜌 and 𝜃 values do not 

change. However, the new 𝜙 value is now the supplement of the 

original value. Thus, the reflection of P across the xy-plane is given by 

(3,
𝜋

6
, 𝜋 −

𝜋

5
) = (3,

𝜋

6
,

4𝜋

5
). 

 

 
 

b) When P is reflected across the yz-plane, the 𝜌 and 𝜙 values do not 

change. However, the new 𝜃 value is now the supplement of the 

original value. Thus, the reflection of P across the yz-plane is given by 

(3, 𝜋 −
𝜋

6
,

𝜋

5
) = (3,

5𝜋

6
,

𝜋

5
). 

 

 
 

 

c) When P is reflected across the xz-plane, the 𝜌 and 𝜙 values do not 

change. However, the new 𝜃 value is now the negation of the original 

value. Thus, the reflection of P across the xz-plane is given by 

(3, −
𝜋

6
,

𝜋

5
). If we require that 𝜃 be positive, then this point is also 

described by (3,2𝜋 −
𝜋

6
,

𝜋

5
) = (3,

11𝜋

6
,

𝜋

5
). 
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 •  •  •  •  

 

Example 40.8: Rewrite the point P given by spherical coordinates (𝜌, 𝜃, 𝜙) =

(−3,
𝜋

6
,

𝜋

5
) so that all values are positive. 

 

Solution: Note that the angles 𝜃 =
𝜋

6
 and 𝜙 =

𝜋

5
 describe a ray extending from 

the origin into the positive octant, where x, y and z are all positive. Any point on 

this ray would have a positive value for 𝜌, being the point’s distance from the 

origin. 

 

If the ray is extended in the opposite direction, it extends into the octant where 

x, y and z are all negative. Thus, a “distance” of 𝜌 = −3 is interpreted as a point 

that lies on this ray such that its x, y and z coordinates would all be negative 

 

We adjust the angle values so that 𝜋 ≤ 𝜃 ≤
3𝜋

2
, making both the x and y 

coordinates negative, and 
𝜋

2
≤ 𝜙 ≤ 𝜋, making the z coordinate negative. For 𝜃, 

we add 𝜋 to the original angle measure, and for 𝜙, we use the supplement of the 

original angle measure. Thus, (−3,
𝜋

6
,

𝜋

5
) is equivalent to (−3, 𝜋 +

𝜋

6
, 𝜋 −

𝜋

5
) =

(3,
7𝜋

6
,

4𝜋

5
). 

 

 •  •  •  •  

 

 

 
See an error? Have a suggestion? 

Please see www.surgent.net/vcbook  

 

 

 

 

 

http://www.surgent.net/vcbook
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41. Integration with Spherical Coordinates 
 
A function 𝑓(𝑥, 𝑦, 𝑧) integrated over a region R can be integrated in spherical 

coordinates, where 𝜌2 sin 𝜙 is the Jacobian, and present in all integrals defined 

in spherical coordinates. 

 

∭ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑉
𝑅

= ∫ ∫ ∫ 𝑓(𝑥(𝜌, 𝜃, 𝜙), 𝑦(𝜌, 𝜃, 𝜙), 𝑧(𝜌, 𝜃, 𝜙))
𝜌2

𝜌1

 𝜌2 sin 𝜙  𝑑𝜌 𝑑𝜙 𝑑𝜃
𝜙2

𝜙1

𝜃2

𝜃1

. 

 

Here, 𝑓(𝑥(𝜌, 𝜃, 𝜙), 𝑦(𝜌, 𝜃, 𝜙), 𝑧(𝜌, 𝜃, 𝜙)) represents the integrand after the 

variables x, y and z have been converted into spherical coordinates. 

 

 •  •  •  •  

 

Example 41.1: Use spherical coordinates to find the volume of a sphere of 

radius 1. 

 

Solution. The sphere is described in spherical coordinates by 

 
0 ≤ 𝜌 ≤ 1, 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜙 ≤ 𝜋. 

 

The integrand is 𝑓(𝑥, 𝑦, 𝑧) = 1, since this is a volume integral in 𝑅3. The 

volume element is  

 

𝑑𝑉 = 𝜌2 sin 𝜙  𝑑𝜌 𝑑𝜙 𝑑𝜃. 
 

Thus, we have  

 

∭ 1 𝑑𝑉
𝑅

= ∫ ∫ ∫ 1 𝜌2 sin 𝜙  𝑑𝜌
1

0

 𝑑𝜙
𝜋

0

 𝑑𝜃
2𝜋

0

. 

 

The inner-most integral is evaluated first with respect to 𝜌: 

 

∫ 𝜌2 sin 𝜙  𝑑𝜌
1

0

= sin 𝜙 ∫ 𝜌2 𝑑𝜌
1

0

 

= sin 𝜙 [
𝜌3

3
]

0

1

 

=
1

3
sin 𝜙. 
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This is then integrated with respect to 𝜙: 

 

∫ (
1

3
sin 𝜙)  𝑑𝜙

𝜋

0

=
1

3
∫ sin 𝜙  𝑑𝜙

𝜋

0

 

=
1

3
[− cos 𝜙]0

𝜋 

=
1

3
[(− cos 𝜋) − (− cos 0)]    {

− cos 𝜋 = −(−1) = 1
− cos 0 = −1                

 

=
2

3
 . 

 

Finally, we integrate with respect to 𝜃: 

 

∫ (
2

3
)  𝑑𝜃

2𝜋

0

=
2

3
(2𝜋) =

4𝜋

3
 . 

 

From geometry, we know that the volume of a sphere of radius 1 is 
4

3
𝜋(1)3 =

4𝜋

3
 . This is a check our work. 

 

 •  •  •  •  

 

Example 41.2: Evaluate ∭ √𝑥2 + 𝑦2 + 𝑧2 𝑑𝑉
𝑅

, where 𝑅 is a hemisphere of 

radius 5, centered at the origin and above the xy-plane. 

 

Solution: In rectangular coordinates, the triple integral is 

 

∫ ∫ ∫ √𝑥2 + 𝑦2 + 𝑧2 𝑑𝑧
√25−𝑥2−𝑦2

0

 𝑑𝑦
√25−𝑥2

−√25−𝑥2
 𝑑𝑧

5

−5

. 

 

In spherical coordinates, the integrand is rewritten as √𝑥2 + 𝑦2 + 𝑧2 = √𝜌2 =

𝜌, then multiplied by the Jacobian 𝜌2 sin 𝜙. This same integral in spherical 

coordinates is 

 

∫ ∫ ∫ (𝜌) 𝜌2 sin 𝜙  𝑑𝜌
5

0

 𝑑𝜙
𝜋 2⁄

0

 𝑑𝜃
2𝜋

0

= ∫ ∫ ∫ 𝜌3 sin 𝜙  𝑑𝜌
5

0

 𝑑𝜙
𝜋 2⁄

0

 𝑑𝜃
2𝜋

0

. 

 

This integral has constant bounds and is more easily solved using spherical 

coordinates than in rectangular coordinates. 
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The inner-most integral is evaluated first with respect to 𝜌: 

 

∫ 𝜌3 sin 𝜙  𝑑𝜌
5

0

= sin 𝜙 ∫ 𝜌3 𝑑𝜌
5

0

 

= sin 𝜙 [
𝜌4

4
]

0

5

 

=
625

4
sin 𝜙. 

 

Then, this is then integrated with respect to 𝜙: 

 

∫ (
625

4
sin 𝜙)  𝑑𝜙

𝜋 2⁄

0

=
625

4
[− cos 𝜙]0

𝜋 2⁄
 

=
625

4
(0 − (−1)) 

=
625

4
 . 

 

Lastly, we integrate with respect to 𝜃: 

 

∫ (
625

4
)  𝑑𝜃

2𝜋

0

=
625

4
(2𝜋) =

625𝜋

2
 . 

 

 •  •  •  •  

 

Comment: When using spherical coordinates to find the volume of a solid in 

𝑅3 (or any situation where the variables in the integrand can be isolated as 

separate factors) and assuming all bounds are constants, then the triple integral 

can be written as the product of three single integrals: 

 

Volume = ∫ ∫ ∫ 𝜌2 sin 𝜙  𝑑𝜌 𝑑𝜙 𝑑𝜃
𝜌2

𝜌1

𝜙2

𝜙1

𝜃2

𝜃1

= (∫ 𝑑𝜃
𝜃2

𝜃1

) (∫ sin 𝜙  𝑑𝜙
𝜙2

𝜙1

) (∫ 𝜌2
𝜌2

𝜌1

 𝑑𝜌). 
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Example 41.3: Let Q be a sphere centered at the origin, and R be a cone whose 

vertex is at the origin and opens in the positive z direction. The solid S bounded 

inside the cone and the sphere is called a spherical sector. Suppose the point 

(4,5,7) in rectangular coordinates lies on the “lip”, where the sphere and the 

cone intersect. Find the volume of S. 

 

Solution: We can determine bounds for 𝜌, 𝜃 and 𝜙 by sketching the solid and 

the point on its rim: 

 

 
 

The distance from (0,0,0) to (4,5,7) is √42 + 52 + 72 = √90 = 3√10. Since 

the solid includes the origin, the bounds of 𝜌 are 0 ≤ 𝜌 ≤ 3√10. 

 

Note that the solid includes the positive z-axis, so the lower bound for 𝜙 is 0. 

The upper bound is found by observing a right triangle with the adjacent leg on 

the z-axis, and the hypotenuse corresponding to a line from the origin to the 

point (4,5,7). From this, we see that for an upper bound, we have 𝜙 =

arccos (
7

3√10
). Lastly, the solid encircles the z-axis. Thus, the bounds of 𝜃 are 

0 ≤ 𝜃 ≤ 2𝜋. 
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The volume integral in spherical coordinates is 

 

∫ ∫ ∫ 𝜌2 sin 𝜙  𝑑𝜌
3√10

0

 𝑑𝜙
arccos(

7

3√10
)

0

 𝑑𝜃
2𝜋

0

. 

 

The inner-most integral is evaluated with respect to 𝜌: 

 

∫ 𝜌2 sin 𝜙  𝑑𝜌
3√10

0

= sin 𝜙 ∫ 𝜌2 𝑑𝜌
3√10

0

 

= sin 𝜙 [
𝜌3

3
]

0

3√10

 

=
(3√10)

3

3
sin 𝜙 

= 9(10)3 2⁄ sin 𝜙. 

 

This is then integrated with respect to 𝜙: 

 

∫ (9(10)3 2⁄ sin 𝜙) 𝑑𝜙
arccos(

7

3√10
)

0

= 9(10)3 2⁄ ∫ sin 𝜙  𝑑𝜙
arccos(

7

3√10
)

0

 

= 9(10)3 2⁄ [− cos 𝜙]
0

arccos(
7

3√10
)

 

= 9(10)3 2⁄ [− cos ( arccos (
7

3√10
)) − (− cos 0)] 

= 9(10)3 2⁄ (1 −
7

3√10
). 

 

Finally, we evaluate the outer-most integral with respect to 𝜃: 

 

∫ 9(10)3 2⁄ (1 −
7

3√10
)  𝑑𝜃

2𝜋

0

= 9(10)3 2⁄ (1 −
7

3√10
) 2𝜋 

 = 18𝜋(10)3 2⁄ (1 −
7

3√10
) 

≈ 468.76 cubic units. 
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Using the short form  

 

∫ ∫ ∫ 𝜌2 sin 𝜙  𝑑𝜌 𝑑𝜙 𝑑𝜃
𝜌2

𝜌1

𝜙2

𝜙1

𝜃2

𝜃1

= (∫ 𝑑𝜃
𝜃2

𝜃1

) (∫ sin 𝜙  𝑑𝜙
𝜙2

𝜙1

) (∫ 𝜌2
𝜌2

𝜌1

 𝑑𝜌), 

 

we have  

 

Volume = (∫ 𝑑𝜃
2𝜋

0

) (∫ sin 𝜙  𝑑𝜙
arccos(

7

3√10
)

0

) (∫ 𝜌2
3√10

0

 𝑑𝜌) 

= ([𝜃]0
2𝜋) ([− cos 𝜃]

0

arccos(
7

3√10
)

) ([
𝜌3

3
]

0

3√10

) 

= (2𝜋) (−
7

3√10
− (−1)) (

(3√10)
3

3
) 

= 9(10)3 2⁄ (1 −
7

3√10
) 2𝜋 

= 18𝜋(10)3 2⁄ (1 −
7

3√10
) ≈ 468.76 cubic units. 

 

 •  •  •  •  

 

Example 41.4: Use spherical coordinates to find the volume contained within 

the cone 𝑧 = √𝑥2 + 𝑦2 and below the plane 𝑧 = 6. 

 

Solution: First, observe that the solid is not a spherical sector as in the previous 

example. The value of 𝜌 will vary as a function of 𝜙.  

 
 

Note that 𝜌 will vary as a function of 𝜙. 
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The bounds for 𝜃 and 𝜙 are easy to determine. The “sweep” angle 𝜃 

encompasses a full counter-clockwise rotation around the xy-plane from the 

positive x-axis back to the positive x-axis, so that 0 ≤ 𝜃 ≤ 2𝜋. The “lean” angle 

𝜙 varies from 0 (the positive z-axis) to 
𝜋

4
 (the side of the cone, which is 45 

degrees from both the positive x-axis and the positive y-axis). 

 

For the plane 𝑧 = 6, substitute 𝑧 = 𝜌 cos 𝜙, getting 𝜌 cos 𝜙 = 6. Then solving 

for 𝜌, we have 𝜌 = 6 cos 𝜙⁄ = 6 sec 𝜙. Since the object is a solid and includes 

the origin, the lower bound for 𝜌 is 0, while the upper bound is the plane, so that 

the bounds for 𝜌 are 0 ≤ 𝜌 ≤ 6 sec 𝜙. Thus, the volume integral is 

 

∫ ∫ ∫ 𝜌2 sin 𝜙  𝑑𝜌 𝑑𝜙 𝑑𝜃
6 sec 𝜙

0

𝜋 4⁄

0

2𝜋

0

. 

 

The inner-most integral is integrated with respect to 𝜌: 

 

∫ 𝜌2 sin 𝜙  𝑑𝜌
6 sec 𝜙

0

= sin 𝜙 [
𝜌3

3
]

0

6 sec 𝜙

 

= sin 𝜙 (
216 sec3 𝜙

3
) 

= 72 sin 𝜙 cos−3 𝜙. 

 

This is now integrated with respect to 𝜙. Note that 72 sin 𝜙 cos−3 𝜙 can be 

antidifferentiated by a u-du substitution, where 𝑢 = cos 𝜙 so that 𝑑𝑢 =
− sin 𝜙  𝑑𝜙. This results in a power-rule form, ∫(−72𝑢−3) 𝑑𝑢 = 36𝑢−2: 

 

∫ 72 sin 𝜙 cos−3 𝜙
𝜋 4⁄

0

 𝑑𝜙 = [36 cos−2 𝜙]0
𝜋 4⁄

 

= 36 (
√2

2
)

−2

− (36(1)−2) 

= 36(2) − 36 

= 36 . 

 

Lastly, we integrate with respect to 𝜃: 

 

∫ (36) 𝑑𝜃
2𝜋

0

= 36(2𝜋) = 72𝜋 cubic units. 

 

 


