33. Riemann Summation over
Rectangular Regions

A rectangular region R in the xy-plane can be defined using compound
inequalities, where x and y are each bound by constants such that a; < x <
a, and b; <y < b,. Let z = f(x,y) be a continuous function defined over a
rectangular region R in the xy-plane. The notation

represents the double integral of z = f(x, y) over R. The dA represents “area
element”, and is either dy dx or dx dy. Thus, we can write

J | fCoy)da= j " fy) dy dx = jb b j jzf(x,y) dx dy.

by

Note that the bounds a,; and a, correspond with the differential dx, and bounds
b, and b, correspond with dy.

The value of a double integral can be approximated by Riemann sums adapted
to the two-dimensional case. Interval a; < x < a, is subdivided into m
subdivisions (not necessarily of equal size) and interval by <y < b, is
subdivided into n subdivisions (again, not necessarily of equal size). If we define
indices 1 <i <mand 1 <j < n, then we have a way to identify a particular
subdivision within region R. For example, if a; < x < a, is subdivided into 4
subdivisions and b; < y < b, is subdivided into 5 subdivisions, then (x,, y3) is
a representative point within the 2" subdivision of the x-interval and the 3
subdivision of the y-interval, and f (x,, ¥3) is the function evaluated at (x,, y3).

Using this scheme, a double integral can be approximated by a double sum over
iand;j:

ﬂR ..... FGy) dA ~ N if(xi'Yj) Ay Ax or Zn:if(xi'%) Ax Ay.

i=1 j=1 j=1i=1
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Example 33.1: Use Riemann Sums to approximate

JI. x*y dA where R is the rectangle 0 < x < 3 and
1 < y < 5inthe xy plane. Subdivide the region R into
subregions each with length 1 to a side, and from each
subregion, choose x and y to be the “upper right”
corner.

Solution: The rectangular region R is shown at right,
subdivided into subregions, so that AA = Ax Ay =
(1)(1) = 1. There are 12 such subregions.

Then choose a representative point (x;,y;) within
each subregion. In this example, we choose (x;, y;)
to be the “upper right” point within each subregion
(this is an arbitrary choice. We could choose the
“lower left” or the “middle point”, and so on). Here,
1<i<3and 2<j<5, the bounds chosen for
convenience.

Next, evaluate the integrand z = f(x,y) = x%y at
the representative points (x;,y;):

f(,5) =5 f(25) =20 f(3,5) =45
fA4) =4 f4)=16 f(34)=36
f(1,3)=3 f(23)=12 f(33)=27
fA2)=2 f(22)=8 f(32)=18

5
I
1\
1
0 3
¥
{1,53= v J3:3)
“'4]-{2?] ul:3'4]
“'3]-':2’1-] uI:S'BJ
(t2), % @2
(2,2)
x

Visually, we have a surface z = f(x,y) = x%y “above” the xy-plane. Each
subregion in R is the base of a rectangular box whose height is the function value
shown in the table above. Each box has a volume of f(x;,y;) dA. Since dA =

dx dy = (1)(1) = 1ineach case, each box has volume f(x;, ;) x 1, or simply

f(xi, ;). The value of JI,” x*y dA is approximated by the sum of the volumes

of the rectangular boxes contained within it. Thus,

ff;;xzy dA =~ izs:f(xi'}’j) Ay Ax

i=1 j=2

=2+8+18+3+12+27+4+16+36+5+20+45

= 196.
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Note that if we chose the representative point to be the lower-left corner of each
subregion, we would find that the Riemann Sum is 50. The mean, 196450 _ 123,

is a reasonable approximation of [~ x?y dA.

0060060400400

Example 33.2: Use Riemann Sums to approximate ffR g(x,y) dA, where g is

shown by the contour map below. Let the region of integration R be given by
—4<x<4-6<y<6,and let Ax =2 and Ay = 2. Use the middle point
within each subregion.

Solution: The region R is identified and then subdivided into 2 X 2 subregions
(lower left, boldfaced). Then the middle point (x;y;) from within each
subregion is identified (lower right):
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The values of z = g(x, y) are estimated from the contour map. For example, in
the top tier of subregions, reading left to right and using the middle points, the
values of g are approximately g(—3,5) = 37,g(—1,5) = 46,9(1,5) = 55 and

9(3,5) = 60.

Each of these subregions is the base of a rectangular box whose heights are given
by the z; = g(x;, ;) values. Each box then has a volume of g(x;, ;) dA. Since

dA = (2)(2) = 4, each box has a volume of g(x;,y;) X 4.

The approximate values of g(x;, y;) are shown below in an array that matches
the orientation of the subregions in the previous figure:

The approximate value of [f

37
27
22
16
13
11

R

46
34
27
23
20
18

55
42
33
28
25
25

60
49
40
34
31
29

g(x,y) dA is the sum of the volumes of each
rectangular box contained within it:
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Note that the 4 can be factored to the front. Thus, the approximate value of

JI. g(x,y) dA is the sum of all the g(x;y;) values in the array above,
multiplied by 4:

- (37+46+55+60+27+34+42+49+22+27+33+40)
+16+23+28+34+13+20+25+31+11+18+25+29/

which is about 2,980 cubic units.

0060060400400

34. Double Integration over
Rectangular Regions

A double integral is evaluated “inside out”—that is, the inside integral is
evaluated first, then that result becomes the integrand of the outer integral,
which is then evaluated.

Example 34.1: Evaluate [f,” x*y dA where R is the rectangle 0 < x < 3 and
1<y<5.

Solution: We can choose either the dy dx ordering or the dx dy ordering. Let’s
choose dA = dx dy. Thus, we have

Integrate the inner integral with respect to x, treating y as a constant:

3 1.7 1

f x?ydx = [—x3y] ==y[3% - 03] = 9y.

o 3 o 3

Now we integrate the result with respect to y:
5 _[9.2]° _ 9 e2 2y —

[, 9ydy = [;y ]1 =-(5 - 1%) = 108.

If we chose dA = dy dx, we have the following:

3 5
f f x2y dy dx.
0 1
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The inner integral is determined first with respect to y, treating x as a constant
temporarily:

s 1 17 1 1
J- x?y dy = x? [—yz] ==x%[(5)% — (1)?] = =x2(24) = 12x2.
L 27 1,72 2
This result is now integrated with respect to x:
3
f 12x?% dx = [4x3]3 = 4[(3)% — (0)3] = 4(27) = 108.
0

Both orderings of the differentials gives the same result, 108, as expected. This
is the volume of the solid bounded below by the region of integration R and
above by the surface z = x?y.

0060009000

If the region is infinite in one direction, the integral is improper and may be
evaluated using limits.

Example 34.2: Evaluate

0 2 x3
—— dx dy.
J; J;ll-+'y2

Solution: The inner integral is determined first, with
integral:

1
1+y?

moved outside the

2 x3 1 2
dx = 34
1 11 12
-l
1+y214° 1,

-3 ()@ -

_ 15 1
- T(l +y2>'
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This is then integrated with respect to y. The constant 1:5 can be moved outside

the integral, and the upper bound, oo, is replaced with b, where b is allowed to
approach infinity as a limit:

1507 1 15fb iy
4 ), 1+ P T\ 2 ), 142 Y

15
lim T [arctan y]3

b—oo

15
=7 lir lim [arctan b — arctan 0]

15 15
~ 4 (E_ 0) = TH‘

Recall that as an angle 8 approaches g radians from below, tan 6 approaches
positive oo. Thus, if & = arctan b, then arctan b approaches g as b approaches

0.
000000040

Example 34.3: Evaluate

/2
f f (x2 + cos3y) dy dx.
0

/6

Solution: The inner integral is determined first:

/2
f (x% 4 cos3y) dy = [x y+ —sm 3y]

/6 n/6

= [ <§>+%sm<%")]—[x2 ®)+30 ()

Recall that sin (37") = —1 and that sin (3?”) = sin (%) = 1. We have,

[ 5)+5 (1)] [ )+= (1)]:x2(f—f)—3=fx2—§.
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This is then integrated:

J‘”‘(nz 2>d_1r3 2]
, 3% T3) T [9* T3

-Feor-2o]-For-3o)

_64m 8

9 3’
40000000000

Example 34.4: Evaluate

2 3 ,
f jxye“y dx dy.
01

Solution: We can simplify the integrand using algebra first: xye’“’yZ =

xye"ey2 = xe"yeyz. Note that since this is a single term, we may group the
factors as desired. The factor xe* will be integrated using integration by parts,

while the fatctoryey2 can be integrated using u-du substitution. It does not make
a difference in which order we integrate, but it may be simpler to integrate with
respect to y first. Thus, we rewrite the iterated integral as

3 r2 5
f f xe*ye¥" dydx.
1 Jo

Integrating the inside integral with respect to y, we have
2

2 2 1 2
f xe*ye¥ dy = xe* [—ey ]
0 2 0

1
= Exex[e(z)z — e(o)z]

= 1xe"[e4 —1]
5 .

This is now integrated with respect to x. Note that % (e* — 1) is a constant and
can be moved outside the integral:

et —1 3
> J-lxexdx.
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To antidifferentiate xe*, use integration by parts. Let u = x and dv = e*dx.
Thus, du = dx and v = e*. Since [ u dv = uv — [ v du, we have

e‘*—lf3 * g _e4—1[ . f"d]
5 1xe x =——|xe e*dx

64 -1 x x13
= 2 [xe* —e*]3
et—1
=S [Be? e — (et =)
_2e%(e*—-1)
B 2
=e” —e3.
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Example 34.5: The density of a city’s population is given by P(x,y) = 0.2x% +
0.1y3, where x and y are in miles, and P is on thousands of people per square
mile. Assume that the city is a rectangle measuring 6 miles east to west (x), and
4 miles north to south (y), and that x = 0 and y = 0 is the southwestern corner
of the city’s boundaries. Find the city’s population.

Solution: The city’s population is given by the double integral:

4 06
f f (0.2x2 + 0.1y3) dx dy.
0o Jo

Evaluating the inside integral with respect to x first, we have
6 0.2 6
J (0.2x% +0.1y3) dx = [?x3 + 0.1xy3]
0 0

= (F©7 +010)y*) - (2 ©* +010)?)

= 14.4 + 0.6y°.
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This is then integrated with respect to y:
4 0.6 ,1*
f (144 + 0.6y3) dy = [14.4y + Ty‘*]
0 0

0.6 0.6
- (14.4(4) + = (4)4) - (14.4(0) + = (0)4>
= 96.
Thus, the city has about 96,000 people within its boundaries.

0060060090400

The average value of a multivariable function z = f(x,y) over a region R is

given by £, = $ﬂR f(x,y) dA, where A(R) is the area of region R.

Example 34.6: Find the average value of the result in the previous example and
explain its meaning in context.

Solution: The region R has an area of (6)(4) = 24 square miles. Thus, the
average value of P(x,y) = 0.2x? + 0.1y3 over R is P,,, = 2—14(96) =4, The
city has an average density of about 4,000 people per square mile.

0060009000

See an error? Have a suggestion?
Please see www.surgent.net/vcbook
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35. Double Integration over
Non-Rectangular Regions of Type |

Consider the region R shown below.

¥ ¥
(0,3) y=—3x+3 (0,3) y = _gx +3
¥y =10 r=10
R
{DrD} y = 0 {ﬂ-,[}}l x {D'D} l Y= 0 {4,[}} *

The region is bounded by the lines y = 0 (the x-axis), x = 0 (the y-axis), and
y = —%x + 3. If we set up a double integral is the dy dx ordering of
integration, we draw an arrow in the positive y direction (see image, above
right). It enters the region at y; = 0 and exits through y, = —Zx + 3, where

the subscripts help us remember the order in which the boundaries are crossed.
The double integral is

4 ry,=—(3/4)x+3 4 ~—(3/4)x+3
f f f(x,y)dy dx = f j f(x,y) dy dx.
0 (U]

¥1=0
As a dx dy integral, draw an arrow drawn v
in the positive x direction (see image at
right). It enters the region at x; = 0 and (0,3) = _“_}, + 4

exits through x, = —gy + 4 (which is the
x=0

equation y = —Zx + 3 that has been

solved for x). The resulting y bounds are 0
to 3, and the double integral is (0,0) y=o0 (40

3 —(4/3)y+4
J J f(x,y) dx dy.
o Jo

There is no ambiguity where an arrow enters or exits the region. Such a region
is called a Type | region. If there is ambiguity, then the region is called a Type
Il region.

}x
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Below, at left, are regions of Type I. At right are regions of Type II.

Qk/\mj

Integrals over a region of Type | usually require one iterated integral. For
regions of Type Il, more than one iterated integral is required.

Example 35.1: Find the volume below z = f(x,y) = xy + x? over the region
R, which is a triangle with vertices (0,0), (5,0) and (0,10).

Solution. The sketch below shows this to be a region of Type I. Identify all
vertex points and the equation of all boundaries.

¥ 7
(0,10) y=—-2x+ 10

X
(0,0) I (50
y=20
Sketching the region and identifying The gy o order of integration:
boundaries and vertices. Find the bounds for y first, then x.

If we choose to integrate in the dy dx ordering, visualize an arrow drawn in the
positive y direction. It enters the region at the x-axis, which is y; = 0, and exits
through y, = —2x 4+ 10. The x bounds are 0 to 5, and the iterated integral is

5 —2x+10
f f (xy + x?) dy dx.
0 0

190



Integrating with respect to y, we have

—2x+10

—2x+10 0 g 1

fo (xy +x%) y—[zxy +xy]0
1 1

= <§x(—2x +10)2 + x2(—2x + 10)) - (Ex(O)2 + x2(0)>.

The expression above simplifies to —10x2 + 50x. This is the integrand to be
integrated with respect to X now:

5

5 10
f (=10x% + 50x) dx = [—?x3 + 25x2]
0 0

10
=(—?(5)3+25(5)2)—0
_625
3
0404000 b0

Example 35.2: Evaluate

where R is in the first quadrant bounded by the x-axis, the y-axis and the parabola
y = 25— x2,

Solution: Sketch the region and decide on an ordering of integration. If we
choose a dy dx ordering, visualize an arrow drawn in the positive y direction. It
enters the region at the x-axis, which is y; = 0, and exits through the parabola
y, = 25 — x2. The bounds for x are 0 to 5.

191



The double integral is

5 (25-x2
j J 2xy? dy dx.
0 Jo

The inside integral is determined:

25—x2 2 25-x2 2
f 2xy? dy = [—xy3] = —x(25 — x?)5.
. 37, 3

This is integrated with respect to x using a u-du substitution, with u = 25 — x2:

52 1 ®
z x4y = |—— (25 — x2)*
fosx(ZS x°)° dx [ 12(25 x)]o

(-5 @5 - @)~ (~55 @5 - ")

— 0 ( 1 25 4)_390,625
- 12() 12

If we use a dx dy ordering, the double v
integral is written 255

25 p,/25-y E]
f f 2xy? dx dy, “r
o Jo

Where the bounds are written such that x

has been isolated. This double integral
390,625
12

also evaluates to

I R X E R R X R NXE)
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Example 35.3: Given

5 e
f f g(x,y) dy dx,
0 JeX

Reverse the order of integration (that is, rewrite this double integral as a dx dy
integral).

Solution: The ordering of integration tells us that if we visualize an arrow in the
positive y direction, it will enter the region at y; = e* and exit at the line y =
e, with the x bounds being 0 to 5. The region is shown below, with all vertices
and boundaries identified:

¥
(0,e%) (5,e5)
x=0 y = e*
x=Ilny
0,1) .

To reverse the ordering, now visualize an arrow in the positive x direction. It
enters at x; = 0 (the y-axis) and exits at x, = Iny. The bounds for y are 1 to e®.
We have

e’ rlny
f f 9(6y) dx dy.
1 0

00000000

Example 35.4: Reverse the order of integration of
9 VY

J- h(x,y) dx dy.
0 Yy/3

Solution: Visualize an arrow in the positive x direction. It enters the region R at
X, = iy and exits at x, = /y. The two graphs meet at (0,0) and (3,9), and the
region is shown below:
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(0,0)

Observe that we redefined the bounds in y as a function in terms of x.

Viewing the region, now visualize an arrow in the positive y direction. It will
enter R at y; = x? and exit at y, = 3x. These become the bounds for the dy
integral. The bounds for x are 0 to 3, and the equivalent double integral in the
dy dx ordering is

3 r3x
f f h(x,y) dy dx.
0 Jx2

0060009000

Example 35.5: Evaluate
2 2
f f V1+x2dx dy.
0 Jy

Solution: If we attempt to evaluate the integrals as written (inside first with
respect to x, then outside with respect to y), we discover that finding the
antiderivative of v1 + x? with respect to x is challenging (it would require a
trigonometric substitution). Instead, we reverse the order of integration.

The double integral, as written, suggests that the region R is bounded by the line
x =y and the line x = 2, with the bounds for y being 0 to 2. This region is
sketched below, and all vertices and boundaries are identified:

y
(2:2)

00— 7 20"
}:I' =
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Reversing the order of integration, we visualize an arrow in the positive y-
direction. It enters R at y; = 0 and exits at y, = x. The bounds for x will be 0
to 2, and the double integral in the dy dx ordering is

2 rx
f f\/1+x2 dy dx.
0 Yo

Now, the inside integral is determined. Note that the antiderivative of v1 + x?
with respect to y is yv1 + x2. Thus, we have

f V1+x?dy= [y\/1+x2]:=x\/1+x2.
0

Now we integrate xv'1 + x2 with respect to x. The antiderivative of xv'1 + x?
is found by a u-du substitution. We have

2 1 Z 1
fx 1+ x2 dx=[—(1+x2)3/2] ==(5%2-1).
. 3 o 3
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