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33. Riemann Summation over  

Rectangular Regions 
 
A rectangular region R in the xy-plane can be defined using compound 

inequalities, where x and y are each bound by constants such that 𝑎1 ≤ 𝑥 ≤
𝑎2  and 𝑏1 ≤ 𝑦 ≤ 𝑏2. Let 𝑧 = 𝑓(𝑥, 𝑦) be a continuous function defined over a 

rectangular region R in the xy-plane. The notation  

 

∬ 𝑓(𝑥, 𝑦) 𝑑𝐴
⬚

𝑅

 

 

represents the double integral of 𝑧 = 𝑓(𝑥, 𝑦) over R. The 𝑑𝐴 represents “area 

element”, and is either 𝑑𝑦 𝑑𝑥 or 𝑑𝑥 𝑑𝑦. Thus, we can write  

 

∬ 𝑓(𝑥, 𝑦) 𝑑𝐴
⬚

𝑅

= ∫ ∫ 𝑓(𝑥, 𝑦)
𝑏2

𝑏1

 𝑑𝑦
𝑎2

𝑎1

 𝑑𝑥 = ∫ ∫ 𝑓(𝑥, 𝑦)
𝑎2

𝑎1

 𝑑𝑥
𝑏2

𝑏1

 𝑑𝑦. 

 

Note that the bounds 𝑎1 and 𝑎2 correspond with the differential dx, and bounds 

𝑏1 and 𝑏2 correspond with dy. 

 

The value of a double integral can be approximated by Riemann sums adapted 

to the two-dimensional case. Interval 𝑎1 ≤ 𝑥 ≤ 𝑎2 is subdivided into m 

subdivisions (not necessarily of equal size) and interval 𝑏1 ≤ 𝑦 ≤ 𝑏2 is 

subdivided into n subdivisions (again, not necessarily of equal size). If we define 

indices 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛, then we have a way to identify a particular 

subdivision within region R. For example, if 𝑎1 ≤ 𝑥 ≤ 𝑎2 is subdivided into 4 

subdivisions and 𝑏1 ≤ 𝑦 ≤ 𝑏2 is subdivided into 5 subdivisions, then (𝑥2, 𝑦3) is 

a representative point within the 2nd subdivision of the x-interval and the 3rd 

subdivision of the y-interval, and 𝑓(𝑥2, 𝑦3) is the function evaluated at (𝑥2, 𝑦3). 

 

Using this scheme, a double integral can be approximated by a double sum over 

𝑖 and 𝑗: 

 

∬ 𝑓(𝑥, 𝑦) 𝑑𝐴
⬚

𝑅

≈ ∑ ∑ 𝑓(𝑥𝑖 , 𝑦𝑗) ∆𝑦 ∆𝑥

𝑛

𝑗=1

𝑚

𝑖=1

 or ∑ ∑ 𝑓(𝑥𝑖 , 𝑦𝑗) ∆𝑥 ∆𝑦

𝑚

𝑖=1

𝑛

𝑗=1

. 
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Example 33.1: Use Riemann Sums to approximate  

∬ 𝑥2𝑦 𝑑𝐴
⬚

𝑅
 where R is the rectangle 0 ≤ 𝑥 ≤ 3 and 

1 ≤ 𝑦 ≤ 5 in the xy plane. Subdivide the region R into 

subregions each with length 1 to a side, and from each 

subregion, choose x and y to be the “upper right” 

corner. 

 

Solution: The rectangular region R is shown at right, 

subdivided into subregions, so that ∆𝐴 = ∆𝑥 ∆𝑦 =
(1)(1) = 1. There are 12 such subregions. 

 

 

Then choose a representative point (𝑥𝑖 , 𝑦𝑗) within 

each subregion. In this example, we choose (𝑥𝑖 , 𝑦𝑗) 

to be the “upper right” point within each subregion 

(this is an arbitrary choice. We could choose the 

“lower left” or the “middle point”, and so on). Here, 

1 ≤ 𝑖 ≤ 3 and 2 ≤ 𝑗 ≤ 5, the bounds chosen for 

convenience. 

 

Next, evaluate the integrand 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2𝑦 at 

the representative points (𝑥𝑖 , 𝑦𝑗): 

 
𝑓(1,5) = 5 𝑓(2,5) = 20 𝑓(3,5) = 45

𝑓(1,4) = 4 𝑓(2,4) = 16 𝑓(3,4) = 36

𝑓(1,3) = 3 𝑓(2,3) = 12 𝑓(3,3) = 27

𝑓(1,2) = 2 𝑓(2,2) = 8  𝑓(3,2) = 18

 

 

Visually, we have a surface 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2𝑦 “above” the xy-plane. Each 

subregion in R is the base of a rectangular box whose height is the function value 

shown in the table above. Each box has a volume of 𝑓(𝑥𝑖 , 𝑦𝑗) 𝑑𝐴. Since 𝑑𝐴 =

𝑑𝑥 𝑑𝑦 = (1)(1) = 1 in each case, each box has volume 𝑓(𝑥𝑖 , 𝑦𝑗) × 1, or simply 

𝑓(𝑥𝑖 , 𝑦𝑗). The value of ∬ 𝑥2𝑦 𝑑𝐴
⬚

𝑅
 is approximated by the sum of the volumes 

of the rectangular boxes contained within it. Thus,  

 

∬ 𝑥2𝑦 𝑑𝐴
⬚

𝑅

≈ ∑ ∑ 𝑓(𝑥𝑖 , 𝑦𝑗) ∆𝑦 ∆𝑥

5

𝑗=2

3

𝑖=1

 

= 2 + 8 + 18 + 3 + 12 + 27 + 4 + 16 + 36 + 5 + 20 + 45 

= 196. 
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Note that if we chose the representative point to be the lower-left corner of each 

subregion, we would find that the Riemann Sum is 50. The mean, 
196+50

2
= 123, 

is a reasonable approximation of ∬ 𝑥2𝑦 𝑑𝐴
⬚

𝑅
. 

 

 •  •  •  •  •  

 

Example 33.2: Use Riemann Sums to approximate ∬ 𝑔(𝑥, 𝑦) 𝑑𝐴
⬚

𝑅
, where 𝑔 is 

shown by the contour map below. Let the region of integration R be given by 

−4 ≤ 𝑥 ≤ 4, −6 ≤ 𝑦 ≤ 6, and let ∆𝑥 = 2 and ∆𝑦 = 2. Use the middle point 

within each subregion. 

 

 
 

 

Solution: The region R is identified and then subdivided into 2 × 2 subregions 

(lower left, boldfaced). Then the middle point (𝑥𝑖 , 𝑦𝑗) from within each 

subregion is identified (lower right): 
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The values of 𝑧 = 𝑔(𝑥, 𝑦) are estimated from the contour map. For example, in 

the top tier of subregions, reading left to right and using the middle points, the 

values of 𝑔 are approximately 𝑔(−3,5) = 37, 𝑔(−1,5) = 46, 𝑔(1,5) = 55 and 

𝑔(3,5) = 60. 

 

Each of these subregions is the base of a rectangular box whose heights are given 

by the 𝑧𝑖 = 𝑔(𝑥𝑖 , 𝑦𝑗) values. Each box then has a volume of 𝑔(𝑥𝑖 , 𝑦𝑗) 𝑑𝐴. Since 

𝑑𝐴 = (2)(2) = 4, each box has a volume of 𝑔(𝑥𝑖 , 𝑦𝑗) × 4. 

 

The approximate values of 𝑔(𝑥𝑖 , 𝑦𝑗) are shown below in an array that matches 

the orientation of the subregions in the previous figure: 

 

37 46 55 60 

27 34 42 49 

22 27 33 40 

16 23 28 34 

13 20 25 31 

11 18 25 29 

 

The approximate value of ∬ 𝑔(𝑥, 𝑦) 𝑑𝐴
⬚

𝑅
 is the sum of the volumes of each 

rectangular box contained within it: 

 

∬ 𝑔(𝑥, 𝑦) 𝑑𝐴
⬚

𝑅

≈ 37(4) + 46(4) + 55(4) + 60(4) + ⋯. 
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Note that the 4 can be factored to the front.  Thus, the approximate value of 

∬ 𝑔(𝑥, 𝑦) 𝑑𝐴
⬚

𝑅
 is the sum of all the 𝑔(𝑥𝑖 , 𝑦𝑗) values in the array above, 

multiplied by 4: 

 

∬ 𝑔(𝑥, 𝑦) 𝑑𝐴
⬚

𝑅

≈ 4 (
37 + 46 + 55 + 60 + 27 + 34 + 42 + 49 + 22 + 27 + 33 + 40

+ 16 + 23 + 28 + 34 + 13 + 20 + 25 + 31 + 11 + 18 + 25 + 29
), 

 

which is about 2,980 cubic units. 

 

 •  •  •  •  •  

 

34. Double Integration over  

Rectangular Regions 
 
A double integral is evaluated “inside out”—that is, the inside integral is 

evaluated first, then that result becomes the integrand of the outer integral, 

which is then evaluated. 

 

Example 34.1: Evaluate ∬ 𝑥2𝑦 𝑑𝐴
⬚

𝑅
 where R is the rectangle 0 ≤ 𝑥 ≤ 3 and 

1 ≤ 𝑦 ≤ 5. 

 

Solution: We can choose either the 𝑑𝑦 𝑑𝑥 ordering or the 𝑑𝑥 𝑑𝑦 ordering. Let’s 

choose 𝑑𝐴 = 𝑑𝑥 𝑑𝑦. Thus, we have  

 

∬ 𝑥2𝑦 𝑑𝐴
⬚

𝑅

= ∫ ∫ 𝑥2𝑦 𝑑𝑥
3

0

𝑑𝑦
5

1

. 

 

Integrate the inner integral with respect to x, treating y as a constant: 

 

∫ 𝑥2𝑦 𝑑𝑥
3

0

= [
1

3
𝑥3𝑦]

0

3

=
1

3
𝑦[33 − 03] = 9𝑦. 

 

Now we integrate the result with respect to y: 

 

∫ 9𝑦 𝑑𝑦
5

1
= [

9

2
𝑦2]

1

5

=
9

2
(52 − 12) = 108. 

 

If we chose 𝑑𝐴 = 𝑑𝑦 𝑑𝑥, we have the following: 

 

∫ ∫ 𝑥2𝑦 𝑑𝑦 𝑑𝑥
5

1

3

0

. 



184 
 

The inner integral is determined first with respect to y, treating x as a constant 

temporarily: 

 

∫ 𝑥2𝑦 𝑑𝑦
5

1

= 𝑥2 [
1

2
𝑦2]

1

5

=
1

2
𝑥2[(5)2 − (1)2] =

1

2
𝑥2(24) = 12𝑥2. 

 

This result is now integrated with respect to x: 

 

∫ 12𝑥2
3

0

 𝑑𝑥 = [4𝑥3]0
3 = 4[(3)3 − (0)3] = 4(27) = 108. 

 

Both orderings of the differentials gives the same result, 108, as expected. This 

is the volume of the solid bounded below by the region of integration R and 

above by the surface 𝑧 = 𝑥2𝑦. 

 

 •  •  •  •  •  

 

If the region is infinite in one direction, the integral is improper and may be 

evaluated using limits. 

 

Example 34.2: Evaluate 

 

∫ ∫
𝑥3

1 + 𝑦2
 𝑑𝑥

2

−1

 𝑑𝑦
∞

0

. 

 

Solution: The inner integral is determined first, with 
1

1+𝑦2 moved outside the 

integral: 

 

∫
𝑥3

1 + 𝑦2
 𝑑𝑥

2

−1

=
1

1 + 𝑦2
∫ 𝑥3 𝑑𝑥

2

−1

 

=
1

1 + 𝑦2
[
1

4
𝑥4]

−1

2

 

=
1

4
(

1

1 + 𝑦2
) [(2)4 − (−1)4] 

=
15

4
(

1

1 + 𝑦2
). 
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This is then integrated with respect to y. The constant 
15

4
 can be moved outside 

the integral, and the upper bound, ∞, is replaced with 𝑏, where 𝑏 is allowed to 

approach infinity as a limit: 

 

15

4
∫

1

1 + 𝑦2
 𝑑𝑦

∞

0

= lim
𝑏→∞

(
15

4
∫

1

1 + 𝑦2
 𝑑𝑦

𝑏

0

) 

= lim
𝑏→∞

15

4
[arctan 𝑦]0

𝑏 

=
15

4
lim
𝑏→∞

[arctan 𝑏 − arctan 0] 

=
15

4
(

𝜋

2
− 0) =

15𝜋

8
. 

 

Recall that as an angle 𝜃 approaches 
𝜋

2
 radians from below, tan 𝜃 approaches 

positive ∞. Thus, if 𝜃 = arctan 𝑏, then arctan 𝑏 approaches 
𝜋

2
 as b approaches 

∞. 

 

 •  •  •  •  •  

 

Example 34.3: Evaluate  

 

∫ ∫ (𝑥2 + cos 3𝑦) 𝑑𝑦
𝜋 2⁄

𝜋 6⁄

 𝑑𝑥
4

0

. 

 

Solution: The inner integral is determined first: 

 

∫ (𝑥2 + cos 3𝑦) 𝑑𝑦
𝜋 2⁄

𝜋 6⁄

= [𝑥2𝑦 +
1

3
sin 3𝑦]

𝜋 6⁄

𝜋 2⁄

 

= [𝑥2 (
𝜋

2
) +

1

3
sin (

3𝜋

2
)] − [𝑥2 (

𝜋

6
) +

1

3
sin (

3𝜋

6
)]. 

 

Recall that sin (
3𝜋

2
) = −1 and that sin (

3𝜋

6
) = sin (

𝜋

2
) = 1. We have, 

 

[𝑥2 (
𝜋

2
) +

1

3
(−1)] − [𝑥2 (

𝜋

6
) +

1

3
(1)] = 𝑥2 (

𝜋

2
−

𝜋

6
) −

2

3
=

𝜋

3
𝑥2 −

2

3
 . 
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This is then integrated: 

 

∫ (
𝜋

3
𝑥2 −

2

3
)  𝑑𝑥

4

0

= [
𝜋

9
𝑥3 −

2

3
𝑥]

0

4

 

= [
𝜋

9
(4)3 −

2

3
(4)] − [

𝜋

9
(0)3 −

2

3
(0)] 

=
64𝜋

9
−

8

3
 . 

 •  •  •  •  •  

 

Example 34.4: Evaluate 

 

∫ ∫ 𝑥𝑦𝑒𝑥+𝑦2
 𝑑𝑥

3

1

 𝑑𝑦
2

0

. 

 

Solution: We can simplify the integrand using algebra first: 𝑥𝑦𝑒𝑥+𝑦2
=

𝑥𝑦𝑒𝑥𝑒𝑦2
= 𝑥𝑒𝑥𝑦𝑒𝑦2

. Note that since this is a single term, we may group the 

factors as desired. The factor 𝑥𝑒𝑥 will be integrated using integration by parts, 

while the factor 𝑦𝑒𝑦2
 can be integrated using u-du substitution. It does not make 

a difference in which order we integrate, but it may be simpler to integrate with 

respect to y first. Thus, we rewrite the iterated integral as 

 

∫ ∫ 𝑥𝑒𝑥𝑦𝑒𝑦2
 𝑑𝑦

2

0

𝑑𝑥
3

1

. 

 

Integrating the inside integral with respect to y, we have 

 

∫ 𝑥𝑒𝑥𝑦𝑒𝑦2
 𝑑𝑦

2

0

= 𝑥𝑒𝑥 [
1

2
𝑒𝑦2

]
0

2

 

=
1

2
𝑥𝑒𝑥[𝑒(2)2

− 𝑒(0)2
] 

=
1

2
𝑥𝑒𝑥[𝑒4 − 1]. 

 

This is now integrated with respect to x. Note that 
1

2
(𝑒4 − 1) is a constant and 

can be moved outside the integral: 

 

𝑒4 − 1

2
∫ 𝑥𝑒𝑥 𝑑𝑥

3

1

. 
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To antidifferentiate 𝑥𝑒𝑥, use integration by parts. Let 𝑢 = 𝑥 and 𝑑𝑣 = 𝑒𝑥𝑑𝑥. 

Thus, 𝑑𝑢 = 𝑑𝑥 and 𝑣 = 𝑒𝑥. Since ∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢, we have  

 

𝑒4 − 1

2
∫ 𝑥𝑒𝑥 𝑑𝑥

3

1

=
𝑒4 − 1

2
[𝑥𝑒𝑥 − ∫ 𝑒𝑥𝑑𝑥] 

=
𝑒4 − 1

2
[𝑥𝑒𝑥 − 𝑒𝑥]1

3 

=
𝑒4 − 1

2
[(3𝑒3 − 𝑒3) − (𝑒1 − 𝑒1)] 

=
2𝑒3(𝑒4 − 1)

2
 

= 𝑒7 − 𝑒3. 

 

 •  •  •  •  •  

 

 

Example 34.5: The density of a city’s population is given by 𝑃(𝑥, 𝑦) = 0.2𝑥2 +
0.1𝑦3, where x and y are in miles, and 𝑃 is on thousands of people per square 

mile. Assume that the city is a rectangle measuring 6 miles east to west (x), and 

4 miles north to south (y), and that 𝑥 = 0 and 𝑦 = 0 is the southwestern corner 

of the city’s boundaries. Find the city’s population. 

 

Solution: The city’s population is given by the double integral: 

 

∫ ∫ (0.2𝑥2 + 0.1𝑦3) 𝑑𝑥
6

0

𝑑𝑦
4

0

. 

 

Evaluating the inside integral with respect to x first, we have 

 

∫ (0.2𝑥2 + 0.1𝑦3) 𝑑𝑥
6

0

= [
0.2

3
𝑥3 + 0.1𝑥𝑦3]

0

6

 

= (
0.2

3
(6)3 + 0.1(6)𝑦3) − (

0.2

3
(0)3 + 0.1(0)𝑦3) 

= 14.4 + 0.6𝑦3. 
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This is then integrated with respect to y: 

 

∫ (14.4 + 0.6𝑦3) 𝑑𝑦
4

0

= [14.4𝑦 +
0.6

4
𝑦4]

0

4

 

= (14.4(4) +
0.6

4
(4)4) − (14.4(0) +

0.6

4
(0)4) 

= 96. 

Thus, the city has about 96,000 people within its boundaries. 

 

 •  •  •  •  •  

 

The average value of a multivariable function 𝑧 = 𝑓(𝑥, 𝑦) over a region 𝑅 is 

given by 𝑓𝑎𝑣 =
1

𝐴(𝑅)
∬ 𝑓(𝑥, 𝑦) 𝑑𝐴

⬚

𝑅
, where 𝐴(𝑅) is the area of region 𝑅. 

 

Example 34.6: Find the average value of the result in the previous example and 

explain its meaning in context. 

 

Solution: The region 𝑅 has an area of (6)(4) = 24 square miles. Thus, the 

average value of  𝑃(𝑥, 𝑦) = 0.2𝑥2 + 0.1𝑦3 over 𝑅 is 𝑃𝑎𝑣 =
1

24
(96) = 4. The 

city has an average density of about 4,000 people per square mile. 

 

 •  •  •  •  •  

 

 

 
See an error? Have a suggestion? 

Please see www.surgent.net/vcbook  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.surgent.net/vcbook
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35. Double Integration over 

Non-Rectangular Regions of Type I 
 
Consider the region 𝑅 shown below. 

 

 
 

The region is bounded by the lines 𝑦 = 0 (the x-axis), 𝑥 = 0 (the y-axis), and 

𝑦 = −
3

4
𝑥 + 3. If we set up a double integral is the 𝑑𝑦 𝑑𝑥 ordering of 

integration, we draw an arrow in the positive y direction (see image, above 

right). It enters the region at 𝑦1 = 0 and exits through 𝑦2 = −
3

4
𝑥 + 3, where 

the subscripts help us remember the order in which the boundaries are crossed. 

The double integral is 

 

∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
𝑦2=−(3 4⁄ )𝑥+3

𝑦1=0

 𝑑𝑥
4

0

= ∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
−(3 4⁄ )𝑥+3

0

 𝑑𝑥
4

0

. 

 

As a 𝑑𝑥 𝑑𝑦 integral, draw an arrow drawn 

in the positive x direction (see image at 

right). It enters the region at 𝑥1 = 0 and 

exits through 𝑥2 = −
4

3
𝑦 + 4 (which is the 

equation 𝑦 = −
3

4
𝑥 + 3 that has been 

solved for x). The resulting y bounds are 0 

to 3, and the double integral is 

 

∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑥
−(4 3⁄ )𝑦+4

0

 𝑑𝑦
3

0

. 

 

There is no ambiguity where an arrow enters or exits the region. Such a region 

is called a Type I region. If there is ambiguity, then the region is called a Type 

II region.  
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Below, at left, are regions of Type I. At right are regions of Type II. 

 

 
 

Integrals over a region of Type I usually require one iterated integral. For 

regions of Type II, more than one iterated integral is required. 

 

Example 35.1: Find the volume below 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥𝑦 + 𝑥2 over the region 

R, which is a triangle with vertices (0,0), (5,0) and (0,10). 

 

Solution. The sketch below shows this to be a region of Type I. Identify all 

vertex points and the equation of all boundaries.  

 

 
 

If we choose to integrate in the 𝑑𝑦 𝑑𝑥 ordering, visualize an arrow drawn in the 

positive y direction. It enters the region at the x-axis, which is 𝑦1 = 0, and exits 

through 𝑦2 = −2𝑥 + 10. The x bounds are 0 to 5, and the iterated integral is 

 

∫ ∫ (𝑥𝑦 + 𝑥2)
−2𝑥+10

0

 𝑑𝑦 𝑑𝑥
5

0

. 
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Integrating with respect to y, we have 

 

∫ (𝑥𝑦 + 𝑥2)
−2𝑥+10

0

 𝑑𝑦 = [
1

2
𝑥𝑦2 + 𝑥2𝑦]

0

−2𝑥+10

 

= (
1

2
𝑥(−2𝑥 + 10)2 + 𝑥2(−2𝑥 + 10)) − (

1

2
𝑥(0)2 + 𝑥2(0)). 

 

The expression above simplifies to −10𝑥2 + 50𝑥. This is the integrand to be 

integrated with respect to x now: 

 

∫ (−10𝑥2 + 50𝑥) 𝑑𝑥
5

0

= [−
10

3
𝑥3 + 25𝑥2]

0

5

 

= (−
10

3
(5)3 + 25(5)2) − 0 

=
625

3
 . 

 

 •  •  •  •  •  

 

Example 35.2: Evaluate  

 

∬ 2𝑥𝑦2 𝑑𝐴,
⬚

𝑅

 

 

where R is in the first quadrant bounded by the x-axis, the y-axis and the parabola 

𝑦 = 25 − 𝑥2. 

 

Solution: Sketch the region and decide on an ordering of integration. If we 

choose a 𝑑𝑦 𝑑𝑥 ordering, visualize an arrow drawn in the positive y direction. It 

enters the region at the x-axis, which is 𝑦1 = 0, and exits through the parabola 

𝑦2 = 25 − 𝑥2. The bounds for x are 0 to 5. 
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The double integral is 

 

∫ ∫ 2𝑥𝑦2
25−𝑥2

0

 𝑑𝑦
5

0

𝑑𝑥. 

 

The inside integral is determined: 

 

∫ 2𝑥𝑦2
25−𝑥2

0

 𝑑𝑦 = [
2

3
𝑥𝑦3]

0

25−𝑥2

=
2

3
𝑥(25 − 𝑥2)3. 

 

This is integrated with respect to x using a u-du substitution, with 𝑢 = 25 − 𝑥2: 

 

∫
2

3
𝑥(25 − 𝑥2)3 𝑑𝑥

5

0

= [−
1

12
(25 − 𝑥2)4]

0

5

 

= (−
1

12
(25 − (5)2)4) − (−

1

12
(25 − (0)2)4) 

= 0 − (−
1

12
(25)4) =

390,625

12
 . 

 

If we use a 𝑑𝑥 𝑑𝑦 ordering, the double 

integral is written 

 

∫ ∫ 2𝑥𝑦2
√25−𝑦

0

 𝑑𝑥
25

0

𝑑𝑦, 

 

Where the bounds are written such that x 

has been isolated. This double integral 

also evaluates to 
390,625

12
. 

 

 •  •  •  •  •  
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Example 35.3: Given  

 

∫ ∫ 𝑔(𝑥, 𝑦) 𝑑𝑦
𝑒5

𝑒𝑥
𝑑𝑥,

5

0

 

 

Reverse the order of integration (that is, rewrite this double integral as a 𝑑𝑥 𝑑𝑦 

integral). 

 

Solution: The ordering of integration tells us that if we visualize an arrow in the 

positive y direction, it will enter the region at 𝑦1 = 𝑒𝑥 and exit at the line 𝑦 =
𝑒5, with the x bounds being 0 to 5. The region is shown below, with all vertices 

and boundaries identified: 

 

 
 

To reverse the ordering, now visualize an arrow in the positive x direction. It 

enters at 𝑥1 = 0 (the y-axis) and exits at 𝑥2 = ln 𝑦. The bounds for y are 1 to 𝑒5. 

We have 

 

∫ ∫ 𝑔(𝑥, 𝑦) 𝑑𝑥
ln 𝑦

0

𝑑𝑦.
𝑒5

1

 

 

 

 •  •  •  •  •  

 

Example 35.4: Reverse the order of integration of 

 

∫ ∫ ℎ(𝑥, 𝑦) 𝑑𝑥
√𝑦

𝑦 3⁄

𝑑𝑦.
9

0

 

 

Solution: Visualize an arrow in the positive x direction. It enters the region R at 

𝑥1 =
1

3
𝑦 and exits at 𝑥2 = √𝑦. The two graphs meet at (0,0) and (3,9), and the 

region is shown below: 
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Observe that we redefined the bounds in y as a function in terms of x. 

Viewing the region, now visualize an arrow in the positive y direction. It will 

enter R at 𝑦1 = 𝑥2 and exit at 𝑦2 = 3𝑥. These become the bounds for the dy 

integral. The bounds for x are 0 to 3, and the equivalent double integral in the 

𝑑𝑦 𝑑𝑥 ordering is 

 

∫ ∫ ℎ(𝑥, 𝑦) 𝑑𝑦
3𝑥

𝑥2
𝑑𝑥.

3

0

 

 

 •  •  •  •  •  

 

Example 35.5: Evaluate 

 

∫ ∫ √1 + 𝑥2 𝑑𝑥
2

𝑦

 𝑑𝑦
2

0

. 

 

Solution: If we attempt to evaluate the integrals as written (inside first with 

respect to x, then outside with respect to y), we discover that finding the 

antiderivative of √1 + 𝑥2 with respect to x is challenging (it would require a 

trigonometric substitution). Instead, we reverse the order of integration.  

 

The double integral, as written, suggests that the region R is bounded by the line 

𝑥 = 𝑦 and the line 𝑥 = 2, with the bounds for y being 0 to 2. This region is 

sketched below, and all vertices and boundaries are identified: 
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Reversing the order of integration, we visualize an arrow in the positive y-

direction. It enters R at 𝑦1 = 0 and exits at 𝑦2 = 𝑥. The bounds for x will be 0 

to 2, and the double integral in the 𝑑𝑦 𝑑𝑥 ordering is 

 

∫ ∫ √1 + 𝑥2
𝑥

0

 𝑑𝑦
2

0

 𝑑𝑥. 

 

 

 

 

Now, the inside integral is determined. Note that the antiderivative of √1 + 𝑥2 

with respect to y is 𝑦√1 + 𝑥2. Thus, we have 

 

∫ √1 + 𝑥2
𝑥

0

 𝑑𝑦 = [𝑦√1 + 𝑥2]
0

𝑥

= 𝑥√1 + 𝑥2. 

 

Now we integrate 𝑥√1 + 𝑥2 with respect to x. The antiderivative of 𝑥√1 + 𝑥2 

is found by a u-du substitution. We have 

 

∫ 𝑥√1 + 𝑥2
2

0

 𝑑𝑥 = [
1

3
(1 + 𝑥2)3 2⁄ ]

0

2

=
1

3
(53 2⁄ − 1). 

 

 


