Describe these regions using polar bounds.

4.

Translate these integrals into polar coordinates. Then find their exact answers. Hint: draw the regions.
5. $\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$.
6. $\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}}\left(1+2 x^{2}+2 y^{2}\right) d y d x$.
7. $\int_{0}^{3} \int_{\sqrt{9-x^{2}}}^{\sqrt{25-x^{2}}} \frac{1}{4 x^{2}+4 y^{2}+1} d y d x+\int_{3}^{5} \int_{0}^{\sqrt{25-x^{2}}} \frac{1}{4 x^{2}+4 y^{2}+1} d y d x$.
9. Find the volume contained within the paraboloid $z=16-x^{2}-y^{2}$ that lies above the $x y$-plane.
10. Find the volume within the paraboloid $z=25-x^{2}-y^{2}$ that lies in the first octant.
11. Find the volume within the paraboloid $z=20-x^{2}-y^{2}$ that lies above the plane $z=11$.
12. Find the volume of the paraboloid $z=20-x^{2}-y^{2}$ that lies above the $x y$-plane but below the plane $z=11$.
13. Find the volume within the paraboloids $z=x^{2}+y^{2}$ and $z=18-x^{2}-y^{2}$.
14. Find the volume within the cylinder $x^{2}+y^{2}=36$ that lies above the $x y$-plane and below $x+z=12$.

Evaluate these integrals.
15. $\iiint_{R} x^{2}+y^{2}+z^{2} d V$, where R is a sphere centered at the origin of radius 3 .
16. $\iiint_{R} \sqrt{x^{2}+y^{2}+z^{2}} d V$, where R is a hemisphere above the $x y$-plane with radis 2 .
17. $\iiint_{R}\left(2 x^{2}+2 y^{2}+2 z^{2}+1\right) d V$, where R is the space between spheres centered at the origin of radii 2 and 4 , within the first octant.
18. $\int_{0}^{4} \int_{-\sqrt{16-x^{2}}}^{\sqrt{16-x^{2}}} \int_{0}^{\sqrt{16-x^{2}-y^{2}}} x d z d y d x$.
19. A hemisphere of radius 6 centered at the origin and above the $x y$-plane has a conical sector removed such that the point $(2,1,4)$ lies on the rim. Find the volume of the remaining solid.
20. Two spheres of radius 1 intersect one another such that each sphere passes through the other's center, creating a lens-shaped region. Find that region's volume.

