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24. Partial Differentiation 
 

The derivative of a single variable function, 
𝑑

𝑑𝑥
𝑓(𝑥), always assumes that the 

independent variable is increasing in the usual manner. Visually, the 

derivative’s value at a point 𝑥 = 𝑎 is the slope of the tangent line of 𝑦 = 𝑓(𝑥) 

at 𝑥 = 𝑎, and the slope’s value only “makes sense” if x increases to the right, as 

viewed on a standard xy-axis system. This is the direction of 
𝑑

𝑑𝑥
𝑓(𝑥). On the 

real line representing the independent variable x, there are just two directions in 

which x can vary: to the right or to the left. However, with a multivariable 

function 𝑧 = 𝑓(𝑥, 𝑦), the number of possible directions in which the 

independent variables can vary (together) is infinite. 

 

Thus, when finding the instantaneous rate of change between the dependent 

variable and one of the independent variables of a multivariable function 𝑧 =
𝑓(𝑥, 𝑦), we must clearly specify a direction in which we are comparing this rate 

of change. 

 

For example, if given a function 𝑧 = 𝑓(𝑥, 𝑦), and assuming for now that its 

graph is continuous everywhere and smooth, in that it lacks corners and folds, 

then there are two possible “convenient” directions in which to calculate an 

instantaneous rate of change: the positive x direction, or the positive y direction. 

(There are infinitely-many directions. This is discussed in Section 26.) 

 

The instantaneous rate of change of z with respect to x is called the partial 

derivative of z with respect to x, and is written  

 
𝜕𝑧

𝜕𝑥
    or     

𝜕𝑓

𝜕𝑥
,     or informally as 𝑧𝑥  or 𝑓𝑥. 

 

In this case, the variable y is held constant. It does not vary. 

 

Similarly, the instantaneous rate of change of z with respect to y is called the 

partial derivative of z with respect to y, and is written  

 
𝜕𝑧

𝜕𝑦
    or    

𝜕𝑓

𝜕𝑦
 ,     or informally as 𝑧𝑦  or 𝑓𝑦. 

 

Here, x is now held constant. 

 

         
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Example 24.1: Use the contour map below, representing 𝑧 = 𝑓(𝑥, 𝑦), to answer 

the questions that follow. Assume that 𝑓 is smooth and continuous. 

 

 
 

a) Use a convenient nearby point to estimate the slope of a tangent line 

drawn at A, in the positive x direction, then estimate the slope of a 

tangent line at this same point, now in the positive y direction. 

b) Use a convenient nearby point to estimate the slope of a tangent line 

drawn at B, in the positive x direction, then estimate the slope of a 

tangent line at this same point, now in the positive y direction. 

c) Estimate the sign of the slope of a tangent line drawn at C, in the 

positive x direction, then estimate the sign of the slope of a tangent line 

at this same point, now in the positive y direction. 

 

Solution:  

 

a) Observe that A is given by the ordered triple (1, 3, 10). A convenient 

nearby point in the positive x direction is (1.6, 3, 20). When moving in 

the positive x direction, variable y remains constant. Thus, a reasonable 

estimation of the slope of a tangent line drawn at A in the positive x 

direction is 
𝜕

𝜕𝑥
𝑓(𝐴) ≈

20−10

1.6−1
=

10

0.6
= 16.7. Note that 

𝜕

𝜕𝑥
𝑓(𝐴) is 

positive. When at A, and moving in the positive x direction, we see that 

we would be walking toward higher ground, as shown by the z = 20 

contour. 

 

In a similar way, we use the ordered triple (1, 4.2, 20) as a convenient 

point in the positive y direction. Thus, a reasonable estimation of the 

slope of a tangent line drawn at A in the positive y direction is 
𝜕

𝜕𝑦
𝑓(𝐴) ≈

20−10

4.2−3
=

10

1.2
= 8.3. Note that when moving in the positive y 

direction, variable x remains constant. 
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b) Point B is (4, 4.5, 20). A convenient point in the positive x direction is 

(5, 4.5, 10). Thus, a reasonable estimation of the slope of a tangent line 

drawn at B in the positive x direction is 
𝜕

𝜕𝑥
𝑓(𝐵) ≈

10−20

5−4
= −10. Here, 

moving in the positive x direction means a negative (downward) 

change in z. 

 

In the y direction, we use (4, 5, 30), and a reasonable estimation of the 

slope of a tangent line drawn at B in the positive y direction is 
𝜕

𝜕𝑦
𝑓(𝐵) ≈

30−20

5−4.5
=

10

0.5
= 20. Moving in the positive y directions means 

a positive (upward) change in z. 

 

c) Rather than choosing points nearby to C, we will study the contour map 

and make a judgement of the signs of 
𝜕

𝜕𝑥
𝑓(𝐶) and 

𝜕

𝜕𝑦
𝑓(𝐶). 

 

The z-value at C is 30. Moving a small distance in the positive x 

direction would place us in a region where 30 < 𝑧 < 40. Thus, this 

means that any immediate movement off of C in the positive x direction 

would result in an increase in the z value. Thus, we can conclude that 
𝜕

𝜕𝑥
𝑓(𝐶) is positive.  

 

Moving a small distance in the positive y direction puts us in a region 

where 20 < 𝑧 < 30. This means that any immediate movement off of 

C in the positive y direction would result in a decrease in the z value. 

Thus, we can conclude that 
𝜕

𝜕𝑦
𝑓(𝐶) is negative. 

 

 
Small arrows are drawn in the positive x and y directions to help suggest the signs  

of the partial derivatives in these directions, at points A, B and C. 
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Example 24.2: Use the contour map below, representing a paraboloid 𝑧 =
𝑓(𝑥, 𝑦) that opens in the positive z direction, to answer the questions that follow. 

Assume that 𝑓 is smooth and continuous, and that the vertex V is at the origin 

and is the minimum point. Determine signs of the partial derivatives of 𝑓 with 

respect to x and with respect to y at points A, B, C and V. 

 

 
 

Solution: As in the previous example, we can sketch in small arrows at each 

point to help suggest the sign of the partial derivative in a particular direction. 

But this method must be used carefully! 

 

We assume that if a surface representing 𝑓 is smooth and continuous, then the 

partial derivatives of 𝑓 with respect to x and with respect to y are 0 at all 

minimum, maximum and saddle points. 

 

Thus, we can immediately identify the signs of the partial derivatives of 𝑓 with 

respect to x and with respect to y at the vertex V. Since V is a minimum, then 
𝜕

𝜕𝑥
𝑓(𝑉) = 0 and 

𝜕

𝜕𝑦
𝑓(𝑉) = 0. 

 

For A, we note that any movement in the positive y direction will mean a positive 

change in z. Thus, 
𝜕

𝜕𝑦
𝑓(𝐴) > 0. However, note that movement in the positive x 

direction is tangential to the level curve. In such cases, the change in z with 

respect to x is 0. Thus, 
𝜕

𝜕𝑥
𝑓(𝐴) = 0. 

 

For B, we have 
𝜕

𝜕𝑥
𝑓(𝐵) > 0 and 

𝜕

𝜕𝑦
𝑓(𝐵) = 0, since movement in the y direction 

is tangential to the level curve. 

 

For C, movements in the x or the y direction are not tangential to the level curve. 

In both cases, z will decrease in value, so that 
𝜕

𝜕𝑥
𝑓(𝐶) < 0 and 

𝜕

𝜕𝑦
𝑓(𝐶) < 0. 

 

         
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On a contour map representing the surface of a smooth and continuous function 

𝑓, the values of the partial derivatives of 𝑓 with respect to x and with respect to 

y are 0 at all minimum, maximum and saddle points. If movement in the x or y 

direction happens to be tangential to the contour at a point, then the value of the 

partial derivative of 𝑓 with respect to the x or y direction is 0. That is, tangential 

movement along a level curve always means no change in z. 

 

 

Example 24.3: The contour map below represents the surface of a smooth and 

continuous function 𝑧 = 𝑔(𝑥, 𝑦). Assume that points B, C, D and G are 

minimum, maximum or saddle points. State the sign (positive, negative or zero) 

of the partial derivative of  𝑔 with respect to x and with respect to y, at each of 

the points A through G. 

 

 
 

Solution:  

 

For point A, we have 
𝜕

𝜕𝑥
𝑔(𝐴) > 0 and  

𝜕

𝜕𝑦
𝑔(𝐴) = 0. 

For point B, we have 
𝜕

𝜕𝑥
𝑔(𝐵) = 0 and  

𝜕

𝜕𝑦
𝑔(𝐵) = 0. B is a local maximum. 

For point C, we have 
𝜕

𝜕𝑥
𝑔(𝐶) = 0 and  

𝜕

𝜕𝑦
𝑔(𝐶) = 0. C is a saddle point. 

For point D, we have 
𝜕

𝜕𝑥
𝑔(𝐷) = 0 and  

𝜕

𝜕𝑦
𝑔(𝐷) = 0. D is a local minimum. 

For point E, we have 
𝜕

𝜕𝑥
𝑔(𝐸) > 0 and  

𝜕

𝜕𝑦
𝑔(𝐸) < 0. 

For point F, we have 
𝜕

𝜕𝑥
𝑔(𝐹) = 0 and  

𝜕

𝜕𝑦
𝑔(𝐹) < 0. 

For point G, we have 
𝜕

𝜕𝑥
𝑔(𝐺) = 0 and  

𝜕

𝜕𝑦
𝑔(𝐺) = 0. G is a local maximum. 

 

Note that A is tangent to the contour in the y direction, and that F is tangent to 

the contour in the x direction. 
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The rules for partial differentiation are identical to single variable integration. 

The Product Rule, Quotient Rule and Chain Rule are all used as necessary. 

 

Example 24.4: Let 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + 3𝑥3𝑦4 + 2𝑥 − 4𝑦. Find 
𝜕𝑧

𝜕𝑥
 and 

𝜕𝑧

𝜕𝑦
 . 

 

Solution: When finding 
𝜕𝑧

𝜕𝑥
 , treat the y as a constant. If it is in a term by itself, 

then the whole term is treated as a constant. If it is connected to x through 

multiplication, then it is treated as a coefficient. Thus, we have 

 

𝜕𝑧

𝜕𝑥
=

𝜕

𝜕𝑥
(𝑥2𝑦 + 3𝑥3𝑦4 + 2𝑥 − 4𝑦) 

=
𝜕

𝜕𝑥
(𝑥2𝑦) +

𝜕

𝜕𝑥
(3𝑥3𝑦4) +

𝜕

𝜕𝑥
(2𝑥) −

𝜕

𝜕𝑥
(4𝑦) 

= (2𝑥)𝑦 + 3(3𝑥2)𝑦4 + 2(1) − 0 

= 2𝑥𝑦 + 9𝑥2𝑦4 + 2. 

 

Similarly, to find 
𝜕𝑧

𝜕𝑦
, we treat x as a constant or a coefficient: 

 

𝜕𝑧

𝜕𝑦
=

𝜕

𝜕𝑦
(𝑥2𝑦 + 3𝑥3𝑦4 + 2𝑥 − 4𝑦) 

=
𝜕

𝜕𝑦
(𝑥2𝑦) +

𝜕

𝜕𝑦
(3𝑥3𝑦4) +

𝜕

𝜕𝑦
(2𝑥) −

𝜕

𝜕𝑦
(4𝑦) 

= 𝑥2(1) + 3𝑥3(4𝑦3) + 0 − 4(1) 

= 𝑥2 + 12𝑥3𝑦3 − 4. 

 

         

 

Example 24.5: Let 𝑧 = 𝑔(𝑥, 𝑦) = 𝑥𝑦𝑒𝑦. Find 
𝜕𝑔

𝜕𝑥
 and 

𝜕𝑔

𝜕𝑦
. 

 

Solution: For 
𝜕𝑔

𝜕𝑥
, the factors 𝑦𝑒𝑦 are attached to x by multiplication and are 

treated as a coefficient of x. Thus, 

 
𝜕𝑔

𝜕𝑥
=

𝜕

𝜕𝑥
(𝑥𝑦𝑒𝑦) = (1)𝑦𝑒𝑦 = 𝑦𝑒𝑦 , where 

𝜕

𝜕𝑥
𝑥 = 1. 

 

For 
𝜕𝑔

𝜕𝑦
, the x is now treated as a coefficient, and the Product Rule of 

differentiation is used: 

 
𝜕𝑔

𝜕𝑦
=

𝜕

𝜕𝑦
(𝑥𝑦𝑒𝑦) = 𝑥𝑦

𝜕

𝜕𝑦
(𝑒𝑦) + 𝑒𝑦

𝜕

𝜕𝑦
(𝑥𝑦) = 𝑥𝑦𝑒𝑦 + 𝑥𝑒𝑦. 
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Example 24.6: Let 𝑧 = 𝑥3 sin(𝑥2𝑦3). Find 𝑧𝑥 and 𝑧𝑦. 

 

Solution: For 𝑧𝑥, note that x is present in two factors attached by multiplication. 

Thus, we use the Product Rule of differentiation and the Chain Rule: 

 

𝑧𝑥 = 𝑥3(cos(𝑥2𝑦3) 2𝑥𝑦3) + 3𝑥2 sin(𝑥2𝑦3) 

= 2𝑥4𝑦3 cos(𝑥2𝑦3) + 3𝑥2 sin(𝑥2𝑦3). 
 

For 𝑧𝑦, we do not need the Product Rule, treating the 𝑥3 as a coefficient of the 

sine operator. However, we do need the Chain Rule: 

 

𝑧𝑦 = 𝑥3 cos(𝑥2𝑦3) 𝑥2(3𝑦2) 

= 3𝑥5𝑦2 cos(𝑥2𝑦3). 
 

         

 

Partial differentiation can be used for functions with more than two variables. 

 

Example 24.7: The function 𝐴(𝑝, 𝑟, 𝑡) = 𝑝(1 + 𝑟)𝑡 gives the future value A of 

p dollars invested at an annual percentage rate r, compounded annually, after t 

years. Find 𝐴𝑝, 𝐴𝑡 and 𝐴𝑟. 

 

Solution: To find 𝐴𝑝, note that (1 + 𝑟)𝑡 is treated as a constant multiplier to p. 

Since 
𝜕

𝜕𝑝
(𝑝) = 1, we have 

 

𝐴𝑝 =
𝜕

𝜕𝑝
(𝑝(1 + 𝑟)𝑡) = (1)(1 + 𝑟)𝑡 = (1 + 𝑟)𝑡 . 

 

To find 𝐴𝑡, we use the differentiation rule for exponentials, 
𝑑

𝑑𝑥
(𝑎𝑥) = 𝑎𝑥 ln 𝑎. 

Thus, we have 

 

𝐴𝑡 =
𝜕

𝜕𝑡
(𝑝(1 + 𝑟)𝑡) = 𝑝(1 + 𝑟)𝑡 ln(1 + 𝑟). 

 

To find 𝐴𝑟, note that p and t are constants. Thus, we can use the Power Rule of 

differentiation: 

 

𝐴𝑟 =
𝜕

𝜕𝑟
(𝑝(1 + 𝑟)𝑡) = 𝑝𝑡(1 + 𝑟)𝑡−1. 

 

         
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Higher-Order Partial Derivatives & Clairaut’s Theorem 

 

Partial differentiation can also be used to find second-order derivatives, and so 

on. Suppose 𝑧 = 𝑓(𝑥, 𝑦) is given. There are two first partial derivatives, 

 

𝑓𝑥 =
𝜕𝑓

𝜕𝑥
     and     𝑓𝑦 =

𝜕𝑓

𝜕𝑦
 . 

 

Each partial derivative is itself a function of two variables. Thus, each has two 

partial derivatives of its own. For example, 𝑓𝑥(𝑥, 𝑦) has two partial derivatives: 

 

(𝑓𝑥)𝑥 =
𝜕

𝜕𝑥
(

𝜕𝑓

𝜕𝑥
) =

𝜕2𝑓

𝜕𝑥2
    and    (𝑓𝑥)𝑦 =

𝜕

𝜕𝑦
(

𝜕𝑓

𝜕𝑥
) =

𝜕2𝑓

𝜕𝑦 𝜕𝑥
 . 

 

Similarly, 𝑓𝑦(𝑥, 𝑦) has two partial derivatives: 

 

(𝑓𝑦)
𝑦

=
𝜕

𝜕𝑦
(

𝜕𝑓

𝜕𝑦
) =

𝜕2𝑓

𝜕𝑦2
    and    (𝑓𝑦)

𝑥
=

𝜕

𝜕𝑥
(

𝜕𝑓

𝜕𝑦
) =

𝜕2𝑓

𝜕𝑥 𝜕𝑦
 . 

 

Usually, second derivatives are noted by using subscripts without parentheses. 

Thus,  

 

𝑓𝑥𝑥 = (𝑓𝑥)𝑥 ,   𝑓𝑦𝑦 = (𝑓𝑦)
𝑦

,   𝑓𝑥𝑦 = (𝑓𝑥)𝑦   and   𝑓𝑦𝑥 = (𝑓𝑦)
𝑥

. 

 

Second derivatives such as 𝑓𝑥𝑥 and 𝑓𝑦𝑦 are informally called homogeneous 

second derivatives, while 𝑓𝑥𝑦 and 𝑓𝑦𝑥 are called mixed second derivatives. 

 

Under “typical” circumstances, e.g. the function 𝑓 being smooth and 

continuous, and twice-differentiable over its relevant domain, the mixed second 

derivatives will be equal: 

 

𝑓𝑥𝑦 = 𝑓𝑦𝑥     (Clairaut′s Theorem). 

 

As one might expect, second derivatives of a smooth and continuous function 

offer insight to the concavity of the function.  

 

Higher-order derivatives are found in a similar manner. For example, 

 

𝑓𝑥𝑥𝑦 = ((𝑓𝑥)𝑥)𝑦 =
𝜕

𝜕𝑦
(

𝜕

𝜕𝑥
(

𝜕

𝜕𝑥
𝑓(𝑥, 𝑦))) =

𝜕3𝑓

𝜕𝑦 𝜕𝑥2
 . 

 

         
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Example 24.8: Given 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + 3𝑥3𝑦4 + 2𝑥 − 4𝑦. Find 𝑓𝑥𝑥, 𝑓𝑦𝑦, 

𝑓𝑥𝑦 and 𝑓𝑦𝑥. 

 

Solution: From a previous example, we found the two first partial derivatives: 

 

𝑓𝑥(𝑥, 𝑦) = 2𝑥𝑦 + 9𝑥2𝑦4 + 2   and   𝑓𝑦(𝑥, 𝑦) = 𝑥2 + 12𝑥3𝑦3 − 4. 

 

Thus, we have  

 

𝑓𝑥𝑥 =
𝜕

𝜕𝑥
𝑓𝑥(𝑥, 𝑦) =

𝜕

𝜕𝑥
(2𝑥𝑦 + 9𝑥2𝑦4 + 2) = 2𝑦 + 18𝑥𝑦4 

 

and 

𝑓𝑦𝑦 =
𝜕

𝜕𝑦
𝑓𝑦(𝑥, 𝑦) =

𝜕

𝜕𝑦
(𝑥2 + 12𝑥3𝑦3 − 4) = 36𝑥3𝑦2. 

 

Furthermore, we have 

 

𝑓𝑥𝑦 =
𝜕

𝜕𝑦
𝑓𝑥(𝑥, 𝑦) =

𝜕

𝜕𝑦
(2𝑥𝑦 + 9𝑥2𝑦4 + 2) = 2𝑥 + 36𝑥2𝑦3 

 

and 

𝑓𝑦𝑥 =
𝜕

𝜕𝑥
𝑓𝑦(𝑥, 𝑦) =

𝜕

𝜕𝑥
(𝑥2 + 12𝑥3𝑦3 − 4) = 2𝑥 + 36𝑥2𝑦3. 

 

Note that 𝑓𝑥𝑦 = 𝑓𝑦𝑥. 

 

         

 

Example 24.9: Given 𝑎 = 𝑏3𝑐4𝑑5. Show that 𝑎𝑏𝑐𝑑 = 𝑎𝑑𝑏𝑐. 

 

Solution: We find successive partial derivatives by reading the subscripts left 

to right. For example, 𝑎𝑏𝑐𝑑 = ((𝑎𝑏)𝑐)𝑑. We have 

 

𝑎𝑏 = 3𝑏2𝑐4𝑑5,     so that     𝑎𝑏𝑐 = 12𝑏2𝑐3𝑑5,    and finally     𝑎𝑏𝑐𝑑

= 60𝑏2𝑐3𝑑4. 
 

Similarly, 

 

𝑎𝑑 = 5𝑏3𝑐4𝑑4,     so that     𝑎𝑑𝑏 = 15𝑏2𝑐4𝑑4,    and finally      𝑎𝑑𝑏𝑐

= 60𝑏2𝑐3𝑑4. 
 

There are six orderings in which to take the derivative of a with respect to b, c 

and d in any order. We have found two. You should find the other four and 

verify all are equal. 
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Example 24.10: Find 
𝜕𝑓

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑦
, where 𝑓(𝑥, 𝑦) = ∫ 3𝑡2 𝑑𝑡

𝑦

𝑥
. 

 

Solution: Defining functions as integrals is not uncommon. In this case, we can 

antidifferentiate the integrand, and evaluate at the limits of integration: 

 

𝑓(𝑥, 𝑦) = ∫ 3𝑡2 𝑑𝑡
𝑦

𝑥

= [𝑡3]𝑥
𝑦

= 𝑦3 − 𝑥3. 

 

Taking partial derivatives, we have, 

 
𝜕𝑓

𝜕𝑥
=

𝜕

𝜕𝑥
(𝑦3 − 𝑥3) = −3𝑥2         and         

𝜕𝑓

𝜕𝑦
=

𝜕

𝜕𝑦
(𝑦3 − 𝑥3) = 3𝑦2. 

 

Note that the results look similar to the original integrand. Was it necessary to 

do the antidifferentiation step? See the next example. 

 

         

 

Example 24.11: Find 
𝜕𝑓

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑦
, where 𝑓(𝑥, 𝑦) = ∫ √𝑡4 − 2𝑡 + 7 𝑑𝑡

𝑦

𝑥
. 

 

Solution: Repeating the steps of the previous example leads to what appears to 

be an impossible step: the integrand does not antidifferentiate “conveniently” 

into common elementary functions. For now, define 𝐻(𝑡) to be the 

antiderivative of √𝑡4 − 2𝑡 + 7. We cannot determine 𝐻(𝑡), but we know its 

derivative is √𝑡4 − 2𝑡 + 7. Thus, we have 

 

𝑓(𝑥, 𝑦) = ∫ √𝑡4 − 2𝑡 + 7 𝑑𝑡
𝑦

𝑥

= [𝐻(𝑡)]𝑥
𝑦

= 𝐻(𝑦) − 𝐻(𝑥). 

 

Thus, 

 
𝜕𝑓

𝜕𝑥
=

𝜕

𝜕𝑥
(𝐻(𝑦) − 𝐻(𝑥)) = −√𝑥4 − 2𝑥 + 7, 

 

where 
𝜕

𝜕𝑥
(𝐻(𝑦)) = 0 and where 

𝜕

𝜕𝑥
(𝐻(𝑥)) is the derivative of 𝐻(𝑡) with x in 

place of t. 

 

In a similar manner,  

 
𝜕𝑓

𝜕𝑦
=

𝜕

𝜕𝑦
(𝐻(𝑦) − 𝐻(𝑥)) = √𝑦4 − 2𝑦 + 7. 

 

         

 


