Unconstrained Optimization

No answers are provided, so please share ideas and discussions on Piazza.

Find all critical points and classify them as minimum, maximum or saddle:

1. $f(x, y)=x^{2}+y^{2}-4 x+8 y-3$
2. $f(x, y)=3 x^{2}+2 y^{2}+6 x+10 y-1$
3. $g(x, y)=x^{2}+x y+y^{2}-5 x+2 y+1$
4. $g(x, y)=x^{3}+y^{3}-12 x-27 y+2$
5. $h(x, y)=\ln \left(x^{2}+5 x y+y^{2}-4 x-9 y\right)$
6. $h(x, y)=x^{2}+6 x y+y^{2}+x+2 y+1$
7. $k(x, y)=x^{4}+y^{4}$

Constrained Optimization

Find all critical points on the surface, subject to the given constraint. You may use substitution or Lagrange.

1. $f(x, y)=x^{2}+y^{2}+3 x y+2 x$, such that $x+3 y=6$
2. $f(x, y)=x y$, such that $2 x+3 y=12$
3. $f(x, y)=3 x+4 y$, such that $x^{2}+y^{2}=16$
4. $f(x, y)=x^{2}+y^{2}$, such that $x^{2}+y^{2}+4 x+6 y=16$
5. $f(x, y)=x^{3}+y^{3}-3 x y$, such that $2 x-y=4$
6. $f(x, y)=x y$, such that $y=x^{2}-4$
7. $f(x, y)=x+y+x y$, such that $x^{2}+y^{2}=1$
8. Find the largest possible area of a square with one corner on the origin and its opposite corner on the line $4 x+7 y=28$.
9. Find the largest possible volume of a box with one corner on the origin and its opposite corner on the plane $5 x+2 y+6 z=30$.
10. Find the point on the plane $3 x+6 y+4 z=24$ that is closes to the origin.
