12. Lines in R^3

Given a point $P_0 = (x_0, y_0, z_0)$ and a direction vector $\mathbf{v}_1 = \langle a, b, c \rangle$ in \mathbb{R}^3 , a line L that passes through P_0 and is parallel to **v** is written parametrically as a function of *t*:

$$x(t) = x_0 + at$$
, $y(t) = y_0 + bt$, $z(t) = z_0 + ct$

Using vector notation, the same line is written

$$\begin{aligned} \langle x, y, z \rangle &= \mathbf{v}_0 + t\mathbf{v}_1 \\ &= \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle \\ &= \langle x_0 + at, y_0 + bt, z_0 + ct \rangle, \end{aligned}$$

where \mathbf{v}_0 is the vector whose head is located at $P_0 = (x_0, y_0, z_0)$.

Example 12.1: Find the parametric equation of a line passing through $P_0 =$ (2, -1, 3) and parallel to the vector $\mathbf{v}_1 = \langle 5, 8, -4 \rangle$.

Solution: The line is represented parametrically by

$$x(t) = 2 + 5t$$
, $y(t) = -1 + 8t$, $z(t) = 3 - 4t$,

or in vector notation as

$$\langle x, y, z \rangle = \langle 2, -1, 3 \rangle + t \langle 5, 8, -4 \rangle = \langle 2 + 5t, -1 + 8t, 3 - 4t \rangle.$$

Note that when t = 0, we obtain the vector (2, -1, 3). If the foot of this vector is placed at the origin, then its head is the ordered triple $P_0 = (2, -1, 3)$

A line segment from a point $P_0 = (x_0, y_0, z_0)$ to a point $P_1 = (x_1, y_1, z_1)$ over $a \le t \le b$ has the form

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + \frac{t-a}{b-a} \langle x_1 - x_0, y_1 - y_0, z_1 - z_0 \rangle,$$

Note that $\langle x_1 - x_0, y_1 - y_0, z_1 - z_0 \rangle$ is the direction vector of the line.

Example 12.2: Find the parametric equation of the line segment from $P_0 = (4, 2, -1)$ to $P_1 = (7, -3, -2)$.

Solution: The direction vector \mathbf{v}_1 is found by subtracting P_0 from P_1 :

$$\mathbf{v}_1 = P_1 - P_0
= \langle 7 - 4, -3 - 2, -2 - (-1) \rangle
= \langle 3, -5, -1 \rangle.$$

Thus, the line can be written

$$\langle x, y, z \rangle = \langle 4, 2, -1 \rangle + t \langle 3, -5, -1 \rangle$$

= $\langle 4 + 3t, 2 - 5t, -1 - t \rangle$, for $0 \le t \le 1$.

The bounds are such that t = 0 gives $P_0 = (4, 2, -1)$ and t = 1 gives $P_1 = (7, -3, -2)$. Since there is a direction implied by increasing *t*, this is called a *directed line segment*.

When a line segment between two points is constructed in this manner, the bounds on t are always $0 \le t \le 1$.

* • * • * • * • *

Example 12.3: Find the parametric equation of the line segment connecting $P_0 = (4, 2, -1)$ and $P_1 = (7, -3, -2)$ such that t = 0 gives P_0 and that t = 5 gives P_1 .

Solution: The difference in *t*-values is b - a = 5 - 0 = 5. Thus, the line segment is

$$\begin{aligned} \langle x, y, z \rangle &= \langle 4, 2, -1 \rangle + \frac{t}{5} \langle 3, -5, -1 \rangle \\ &= \langle 4, 2, -1 \rangle + t \left\langle \frac{3}{5}, -1, -\frac{1}{5} \right\rangle \\ &= \left\langle 4 + \frac{3}{5}t, 2 - t, -1 - \frac{1}{5}t \right\rangle, \quad \text{for } 0 \le t \le 5. \end{aligned}$$

Note that t = 0 gives P_0 and that t = 5 gives P_1 .

Example 12.4: Find the parametric equation of a line segment connecting $P_0 = (4, 2, -1)$ and $P_1 = (7, -3, -2)$ such that t = 4 gives P_0 and t = 11 gives P_1 .

Solution: The starting point occurs when t = 4, indicating in a horizontal shift. The difference in *t*-values is b - a = 11 - 4 = 7. Thus, the line segment is

$$\begin{aligned} \langle x, y, z \rangle &= \langle 4, 2, -1 \rangle + \frac{t - 4}{11 - 4} \langle 3, -5, -1 \rangle \\ &= \langle 4, 2, -1 \rangle + \left\langle \frac{3(t - 4)}{7}, -\frac{5(t - 4)}{7}, -\frac{1(t - 4)}{7} \right\rangle \\ &= \langle 4, 2, -1 \rangle + \left\langle \frac{3}{7}t - \frac{12}{7}, -\frac{5}{7}t + \frac{20}{7}, -\frac{1}{7}t + \frac{4}{7} \right\rangle \quad \left\{ \begin{array}{l} \text{Clearing} \\ \text{fractions} \end{array} \right. \\ &= \left\langle 4 - \frac{12}{7}, 2 + \frac{20}{7}, -1 + \frac{4}{7} \right\rangle + \left\langle \frac{3}{7}t, -\frac{5}{7}t, -\frac{1}{7}t \right\rangle \quad \left\{ \begin{array}{l} \text{Clearing} \\ \text{fractions} \end{array} \right. \\ &= \left\langle \frac{16}{7} + \frac{3}{7}t, \frac{34}{7} - \frac{5}{7}t, -\frac{3}{7} - \frac{1}{7}t \right\rangle, \quad \text{for } 4 \le t \le 11. \end{aligned}$$

Note that t = 4 gives P_0 and that t = 11 gives P_1 .

* • * • * • * • *

When more than one line is being considered, use different parameter variables.

Example 12.5: Let L_1 : $\langle x, y, z \rangle = \langle 1, 2, 5 \rangle + t \langle 2, 4, -3 \rangle$ and L_2 : $\langle x, y, z \rangle = \langle 6, 1, -2 \rangle + s \langle 4, 8, -6 \rangle$ be two lines defined parametrically.

- a) Are lines L_1 and L_2 parallel?
- b) Are lines L_1 and L_2 the same line?

Solution:

- a) The direction vector for line L_1 is $\mathbf{v}_1 = \langle 2, 4, -3 \rangle$ and the direction vector for line L_2 is $\mathbf{v}_2 = \langle 4, 8, -6 \rangle$. Since $\mathbf{v}_2 = 2\mathbf{v}_1$ (or equivalently, $\mathbf{v}_1 = \frac{1}{2}\mathbf{v}_2$), the two vectors are parallel. Thus, so are the lines.
- b) Choose a point from one line and show that the other line passes through it. In this example, choose point $P_0 = (1,2,5)$ from line L_1 . Does L_2 pass through $P_0 = (1,2,5)$? We substitute the coordinates in P_0 for *x*, *y* and *z*, and attempt to solve for a unique value of *s* that would indicate line L_2 passes through a point in line L_1 :

$$1 = 6 + 4s$$
, $2 = 1 + 8s$, $5 = -2 - 6s$.

From the first equation, we get s = -5/4, but from the second equation, we get s = 1/8. Since *s* is not unique, we conclude it is impossible that L_2 passes through $P_0 = (1,2,5)$. Thus, lines L_1 and L_2 represent two different parallel lines.

* • * • * • * • *

Example 12.6: Show that the lines $L_1: (2,3,0) + t(1,-2,5)$ and $L_2: (6,-5,20) + s(-3,6,-15)$ are the same line.

Solution: Their direction vectors are $\mathbf{v}_1 = \langle 1, -2, 5 \rangle$ and $\mathbf{v}_2 = \langle -3, 6, -15 \rangle$. Since $\mathbf{v}_2 = -3\mathbf{v}_1$, the two lines are parallel. Had the direction vectors not been parallel, the parametric equations cannot possibly represent the same line.

Now, choose a point from one line, and see if it is possible to find a unique value for the parameter variable in the other line. From line L_1 , choose the point $P_0 = (2,3,0)$ and then attempt to find a unique value for *s* in L_2 :

$$2 = 6 - 3s$$
, $3 = -5 + 6s$, $0 = 20 - 15s$.

From the first equation, we get s = 4/3. From the second equation, we also get s = 4/3, and from the third equation, we get s = 4/3. Since we were able to find a unique value *s*, we conclude that line L_2 passes through a point that is in line L_1 . Since the lines are already parallel, this would force the two lines to be **coincident**, that is, the same line.

.

Example 12.7: Find the point of intersection of lines L_1 : $\langle x, y, z \rangle = \langle 1, 2, -1 \rangle + t \langle 2, -3, 4 \rangle$ and L_2 : $\langle x, y, z \rangle = \langle 1, 8, 9 \rangle + s \langle 4, -12, -2 \rangle$.

Solution: The direction vectors are $\mathbf{v}_1 = \langle 2, -3, 4 \rangle$ and $\mathbf{v}_2 = \langle 4, -12, -2 \rangle$. Since they are not scalar multiples of one another, the two lines are not parallel. To see if they intersect, we set the equations for *x* equal to one another, and for *y*, and for *z*:

 $\begin{array}{ll} x: & 1+2t=1+4s\\ y: & 2-3t=8-12s\\ z: & -1+4t=9-2s. \end{array}$

Simplifying, we have a system of two variables in three equations:

$$2t - 4s = 0$$
$$-3t + 12s = 6$$
$$4t + 2s = 10.$$

One of two things happens: either we find a solution in s and t, in which case there is an intersection point, or we do not find a solution in s and t, in which case there is no intersection point. From the first two equations, we solve a system:

$$2t - 4s = 0$$

$$-3t + 12s = 6$$

$$\xrightarrow{(\text{Multiply} \\ \text{top row by 3})} 3(2t - 4s) = 0$$

$$-3t + 12s = 6$$

$$\xrightarrow{(\text{Distribute} \\ \text{then add})} 6t - 12s = 0$$

$$-3t + 12s = 6 \rightarrow 3t = 6.$$

Thus, we have t = 2, and back-substituting, we have s = 1. Does this solve the third equation? We substitute and simplify:

$$4(2) + 2(1) = 8 + 2 = 10.$$

We get a true statement. We were able to show that when t = 2, we generate the point (5, -4, 7) on line L_1 , and when s = 1, we generate the same point (5, -4, 7) on line L_2 . Thus, the two lines intersect at this point.

• • • • • • • • • •

Two non-parallel and non-intersecting lines in R^3 are called **skew** lines.

Example 12.8: Show that the lines L_1 : $\langle x, y, z \rangle = \langle 1, 2, -1 \rangle + t \langle 2, -3, 4 \rangle$ and L_2 : $\langle x, y, z \rangle = \langle 1, 8, 5 \rangle + s \langle 4, -12, -2 \rangle$ are skew lines.

Solution: Note that these are the same lines as from the previous example, except that a small change has been made to the equation for z in line L_2 . From the previous example, we established that since the direction vectors are not scalar multiples of one another, then the lines are not parallel. Next, we set the equations for x equal to one another, and for y, and for z:

$$x: 1 + 2t = 1 + 4s$$

$$y: 2 - 3t = 8 - 12s$$

$$z: -1 + 4t = 5 - 2s.$$

This simplifies to

$$2t - 4s = 0$$
$$-3t + 12s = 6$$
$$4t + 2s = 6.$$

From the previous example, solving the system formed by the first two equations gave us t = 2 and s = 1. However, when substituting these values in the third equation, we get 4(2) + 2(1) = 6, which is false. There is no solution of this system in s and t. Thus, the two lines do not intersect, and are skew.