
253  

 

44. Scalar Line Integrals 
 

Let 𝑧 = 𝑓(𝑥, 𝑦) be a continuous function (surface) in 𝑅3 and C a path on the xy-plane. If C is 

parametrized by 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡)〉 for 𝑎 ≤ 𝑡 ≤ 𝑏, then the scalar line integral of 𝑓 along C is 

given by 

 

∫ 𝑓(𝑥, 𝑦) 𝑑𝑠
𝐶

, 

 

where 𝑑𝑠 = |𝐫′(𝑡)| 𝑑𝑡. Thus, the integral is in variable 𝑡 and can be written 

 

∫ 𝑓(𝑥(𝑡), 𝑦(𝑡)) 
𝑏

𝑎

|𝐫′(𝑡)| 𝑑𝑡. 

 

The value of a scalar line integral is the area of a “sheet” above the path C to the surface 𝑓. 

 

         
 

Example 44.1: Find ∫ 𝑥2𝑦 𝑑𝑠
𝐶

, where C is the straight line from (2,1) to (6,4). 

 

Solution: Parametrize the path C first, noting that 〈4,3〉 is the direction vector of the line segment: 

 

𝐫(𝑡) = 〈2,1〉 + 𝑡〈4,3〉 = 〈2 + 4𝑡, 1 + 3𝑡〉, for     0 ≤ 𝑡 ≤ 1. 
 

Thus, 𝐫′(𝑡) = 〈4,3〉 and |𝐫′(𝑡)| = √42 + 32 = √25 = 5, so that 𝑑𝑠 = |𝐫′(𝑡)| 𝑑𝑡 = 5 𝑑𝑡.   

 

From 𝐫(𝑡), we obtain 𝑥(𝑡) = 2 + 4𝑡 and 𝑦(𝑡) = 1 + 3𝑡. These are substituted into the integrand, 

and simplified:  

 

∫ 𝑥2𝑦 𝑑𝑠
𝐶

= ∫ (2 + 4𝑡)2(1 + 3𝑡) 𝑑𝑠
𝐶

 

= ∫ 4(12𝑡3 + 16𝑡2 + 7𝑡 + 1) 5 𝑑𝑡
𝐶

 

= 20 ∫ (12𝑡3 + 16𝑡2 + 7𝑡 + 1) 𝑑𝑡
1

0

 

= 20 [3𝑡4 +
16

3
𝑡3 +

7

2
𝑡2 + 𝑡]

0

1

 

=
770

3
 . 
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Example 44.2: Find ∫ 𝑥 𝑑𝑠
𝐶

, where C is the arc of the parabola 𝑦 = 𝑥2 from (−1,1) to (3,9). 

 

Solution: Path C is parametrized: 

 

𝐫(𝑡) = 〈𝑡, 𝑡2〉,    for    −1 ≤ 𝑡 ≤ 3. 

 

We have 𝐫′(𝑡) = 〈1,2𝑡〉 and |𝐫′(𝑡)| = √12 + (2𝑡)2 = √1 + 4𝑡2, so that 𝑑𝑠 = √1 + 4𝑡2 𝑑𝑡. The 

integrand is now written in terms of 𝑡 and evaluated: 

 

∫ 𝑥 𝑑𝑠
𝐶

= ∫ 𝑡√1 + 4𝑡2 𝑑𝑡
3

−1

 

= [
1

12
(1 + 4𝑡2)3 2⁄ ]

−1

3

 

= (
1

12
(1 + 4(3)2)3 2⁄ ) − (

1

12
(1 + 4(−1)2)3 2⁄ ) 

=
1

12
(373 2⁄ − 53 2⁄ ) ≈ 17.82. 

 

         
 

In some cases, a numerical method needs to be used to evaluate the integral. 

 

Example 44.3: Find ∫ 𝑥3𝑦2 𝑑𝑠
𝐶

, where C is the curve 𝑦 = 𝑥3 from (1,1) to (2,8). 

 

Solution: Path C is parametrized as: 

 

𝐫(𝑡) = 〈𝑡, 𝑡3〉,  for  1 ≤ 𝑡 ≤ 2. 
 

We have 𝐫′(𝑡) = 〈1,3𝑡2〉 and |𝐫′(𝑡)| = √12 + (3𝑡2)2 = √1 + 9𝑡4. The integrand is now written 

in terms of 𝑡: 

 

𝑥3𝑦2 𝑑𝑠 = (𝑡)3(𝑡3)2√1 + 9𝑡4 𝑑𝑡 = 𝑡9√1 + 9𝑡4 𝑑𝑡. 
 

The integral is 

∫ 𝑥3𝑦2 𝑑𝑠
𝐶

= ∫ 𝑡9√1 + 9𝑡4 𝑑𝑡
2

1

. 

 

Using numerical methods, this integral evaluates to approximately 1029.1 units. 
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Example 44.4: The roof of a building is a paraboloid modeled by = 10 −
1

8
𝑥2 −

1

12
𝑦2 , with the 

apex (highest point) above the origin. Assume x and y represent distances from the origin along 

the floor (the xy-plane) orthogonal to one another, and that all measurements are in meters. A wall 

is to be built extending from the origin along the line 𝑦 = 3𝑥. The wall will rise from the floor up 

to the roof. What is the area of this wall? 

 

Solution: The path C is the line 𝑦 = 3𝑥, which is parametrized as 𝐫(𝑡) = 〈𝑡, 3𝑡〉. The lower bound 

for 𝑡 is 0. The upper bound of 𝑡 is where the roof meets the floor along this line. Since 𝑧 = 0 at 

this point, and since 𝑦 = 3𝑥, we make substitutions and solve for 𝑥: 

 

0 = 10 −
1

8
𝑥2 −

1

12
(3𝑥)2 

0 = 10 −
1

8
𝑥2 −

3

4
𝑥2 

0 = 10 −
7

8
𝑥2. 

 

Solving for x, we get 𝑥 = √80 7⁄ ≈ 3.381.  Since 𝑥 = 𝑡 in the parametrization, we have the upper 

bound for 𝑡 as √80 7⁄ . Furthermore, 𝐫′(𝑡) = 〈1,3〉 so that |𝐫′(𝑡)| = √12 + 32 = √10. The integral 

is 

 

∫ (10 −
1

8
𝑥2 −

1

12
𝑦2)  𝑑𝑠

𝐶

= ∫ (10 −
1

8
(𝑡)2 −

1

12
(3𝑡)2) √10 𝑑𝑡

√80 7⁄

0

 

= √10 ∫ (10 −
7

8
𝑡2)  𝑑𝑡

√80 7⁄

0

 

= √10 [10𝑡 −
7

24
𝑡3]

0

√80 7⁄

 

= √10 (10 (√80 7⁄ ) −
7

24
(√80 7⁄ )

3

). 

 

Using a calculator, the area of the wall is about 71.27 meters2. 
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Example 44.5: Find Find ∫ (16 − 𝑥2 − 𝑦2) 𝑑𝑠
𝐶

, where C is the line from (0,0) to (4,0). 

 

Solution:  Path C is parametrized: 

 

𝐫(𝑡) = 〈𝑡, 0〉,   for   0 ≤ 𝑡 ≤ 4. 

 

We have 𝐫′(𝑡) = 〈1,0〉 and |𝐫′(𝑡)| = √12 + (0)2 = 1. Thus,  

 

∫ (16 − 𝑥2 − 𝑦2) 𝑑𝑠
𝐶

= ∫ (16 − 𝑡2) 1 𝑑𝑡⏟
𝑑𝑠

4

0

=
128

3
 

 

This example illustrates that the single-variable integrals along the x-axis are a special case of the 

scalar line integral, where the path is a line and the endpoints lie along the x-axis. The same would 

be true for a single-variable integral along the y-axis (x and y being dummy variables in this 

context). 

 

Suppose that we parameterized the line C from (0,0) to (4,0) as 𝐫(𝑡) = 〈4𝑡, 0〉 for 0 ≤ 𝑡 ≤ 1. Thus, 

we have 𝐫′(𝑡) = 〈4,0〉 and |𝐫′(𝑡)| = √42 + (0)2 = 4. The line integral is now 

 

∫ (16 − (4𝑡)2 − (0)2) 𝑑𝑠
𝐶

= ∫ (16 − 16𝑡2) 4 𝑑𝑡
1

0

 

= 64 ∫ (1 − 𝑡2) 𝑑𝑡
1

0

 

= 64 [𝑡 −
1

3
𝑡3]

0

1

= 64 (
2

3
) =

128

3
. 

 

As expected, we get the same result. Roughly speaking, the first parametrization, 𝐫(𝑡) = 〈𝑡, 0〉 

where 0 ≤ 𝑡 ≤ 4, had a “speed” of |𝐫′(𝑡)| = 1, while the second parametrization, with 𝐫(𝑡) =
〈4𝑡, 0〉 and 0 ≤ 𝑡 ≤ 1 (an interval one-fourth the length of the original interval), covered the same 

path with a “speed” of |𝐫′(𝑡)| = 4. 
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Example 44.6: A glass rod of consistent thickness is in the shape of a quarter-circle of radius 3, 

modeled by 𝐫(𝑡) = 〈3 cos 𝑡 , 3 sin 𝑡〉, where 0 ≤ 𝑡 ≤
𝜋

2
. However, it is not uniformly dense. 

Suppose that its density x centimeters left and right of the origin, and y centimeters above and 

below the origin, is given by 𝑑(𝑥, 𝑦) = 𝑥 + 𝑦 + 𝑥𝑦, where 𝑑 is grams per centimeter. Find the 

mass of this glass rod. 

 

Solution: This is equivalent to evaluating the scalar line integral 

 

∫ (𝑥 + 𝑦 + 𝑥𝑦) 𝑑𝑠
𝐶

. 

 

Note that 𝐫′(𝑡) = 〈−3 sin 𝑡 , 3 cos 𝑡〉, so that |𝐫′(𝑡)| = √(−3 sin 𝑡)2 + (3 cos 𝑡)2 = 3. From 

𝐫(𝑡) = 〈3 cos 𝑡 , 3 sin 𝑡〉, we have 𝑥(𝑡) = 3 cos 𝑡 and 𝑦(𝑡) = 3 sin 𝑡. Substitutions are made: 

 

∫ (𝑥 + 𝑦 + 𝑥𝑦) 𝑑𝑠
𝐶

= ∫ ((3 cos 𝑡) + (3 sin 𝑡) + (3 cos 𝑡)(3 sin 𝑡))
𝜋 2⁄

0

 3 𝑑𝑡 

= 9 ∫ (cos 𝑡 + sin 𝑡 + 3 cos 𝑡 sin 𝑡)
𝜋 2⁄

0

𝑑𝑡 

= 9 [sin 𝑡 − cos 𝑡 +
3

2
sin2 𝑡]

0

𝜋 2⁄

 

= 9 (sin (
𝜋

2
) − cos (

𝜋

2
) +

3

2
sin2 (

𝜋

2
)) − 9 (sin(0) − cos(0) +

3

2
sin2(0)) 

= 9 (1 +
3

2
) − 9(−1) 

=
63

2
 grams. 
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45. Vector Line Integrals: Work & Circulation 
 

Let 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑀(𝑥, 𝑦, 𝑧), 𝑁(𝑥, 𝑦, 𝑧), 𝑃(𝑥, 𝑦, 𝑧)〉 represent a vector field in 𝑅3, and let C be a 

directed path in 𝑅3 parametrized by 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉 for 𝑎 ≤ 𝑡 ≤ 𝑏. The word “directed” 

means that the path must be traversed in a specified direction.  

 

The vector line integral of F along C is given by  

 

∫ 𝐅 ∙ 𝑑𝐫
𝐶

, 

 

where 𝑑𝐫 = 𝐫′(𝑡) =
𝑑

𝑑𝑡
𝐫(𝑡). A line integral of this form is also defined in 𝑅2, where the vector 

field is 𝐅(𝑥, 𝑦) = 〈𝑀(𝑥, 𝑦), 𝑁(𝑥, 𝑦)〉 and C is parametrized by 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡)〉. 
 

A common “descriptive” way to describe this line integral is 

 

∫ 𝐅 ⋅ 𝐓 𝑑𝑠.
𝐶

 

 

As the particle moves along the path C, the vector field either “helps” or “hinders” this particle. In 

order to remove the particle’s speed from consideration, the path is segmented into equally-sized 

sub-segments using the 𝑑𝑠 segmentation, where 𝑑𝑠 = |𝐫′(𝑡)| 𝑑𝑡. This effectively forces the 

particle to maintain a constant speed, and without loss of generality, we can use the unit tangent 

vector, 𝐓(𝑡) =
𝐫′(𝑡)

|𝐫′(𝑡)|
, to represent the constant speed. Thus, at any position along the path, one of 

three situations occurs: 

 

 The vector F at this position points in the same direction as T. That is, F and T are acute, 

and 𝐅 ⋅ 𝐓 > 0. Vector F is “helping” the particle as though it was pushing it from behind. 

 The vector F at this position points in an opposing direction as T. That is, F and T are 

obtuse, and 𝐅 ⋅ 𝐓 < 0. Vector F is hindering the particle’s forward movement, as though it 

were pushing from the front. 

 The vector F at this position points in an orthogonal direction as T, and 𝐅 ⋅ 𝐓 = 0. Vector 

F has no effect on the particle’s forward movement. 

 

The integral then sums (in the sense of integration) all of the dot products along the path. If the 

result of the line integral is positive, then the vector field F had a net positive effect on the particle’s 

movement. If the line integral is negative, then the vector field F had a net negative effect on the 

particle’s movement. If the line integral is 0, then the vector field F had a net-zero effect on the 

particle’s movement. 
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We take the descriptive form of the line integral and make substitutions: 

 

∫ 𝐅 ⋅ 𝐓 𝑑𝑠
𝐶

= ∫ 𝐅 ⋅
𝐶

𝐫′(𝑡)

|𝐫′(𝑡)|
 |𝐫′(𝑡)| 𝑑𝑡 . 

 

Note that |𝐫′(𝑡)| cancels, so we have 

 

∫ 𝐅 ∙ 𝐫′(𝑡) 𝑑𝑡
𝐶

= ∫ 𝐅 ∙ 𝑑𝐫
𝑏

𝑎

, 

 

where 𝑑𝐫 is shorthand for 𝐫′(𝑡) 𝑑𝑡, and 𝑎 ≤ 𝑡 ≤ 𝑏.  

 

The usual process to determine a line integral is the following: 

 

1) Parameterize the path C in variable 𝑡. This will give 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉. It will also 

give the bounds of integration a and b. 

2) Find 𝐫′(𝑡) =
𝑑

𝑑𝑡
𝐫(𝑡), which will give 〈𝑥′(𝑡), 𝑦′(𝑡), 𝑧′(𝑡)〉. 

3) Substitute 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) (from Step 1) into 𝐅(𝑥, 𝑦, 𝑧). This will give F in terms of 𝑡. 

4) Find 𝐅 ∙ 𝑑𝐫, which will be a function in terms of 𝑡. 

5) Integrate the result from Step 4 with respect to 𝑡 and evaluate at the bounds a and b. 

 

Note: the integral below is a common alternative way to express a line integral: 

 

∫ 𝑀(𝑥, 𝑦, 𝑧) 𝑑𝑥 + 𝑁(𝑥, 𝑦, 𝑧) 𝑑𝑦 + 𝑃(𝑥, 𝑦, 𝑧) 𝑑𝑧
𝐶

. 

 

In this form, the expression 𝐅 ∙ 𝑑𝐫 has been expanded, where 𝑑𝐫 is denoted as 〈𝑑𝑥, 𝑑𝑦, 𝑑𝑧〉. It’s 

important to remember that this is equivalent to ∫ 𝐅 ∙ 𝑑𝐫
𝐶

 and is a single integral in variable 𝑡. 

 

The integrals  

 

∫ 𝐅 ⋅ 𝐓 𝑑𝑠
𝐶

,     ∫ 𝐅 ∙ 𝑑𝐫
𝐶

      and      ∫ 𝑀(𝑥, 𝑦, 𝑧) 𝑑𝑥 + 𝑁(𝑥, 𝑦, 𝑧) 𝑑𝑦 + 𝑃(𝑥, 𝑦, 𝑧) 𝑑𝑧
𝐶

 

 

are all equivalent. These line integrals are used to show the work done by a vector field on a 

particle. If the path is a loop, the movement of a particle along the loop is called circulation. 
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Example 45.1: Find ∫ 𝐅 ∙ 𝑑𝐫
𝐶

, where 𝐅(𝑥, 𝑦) = 〈−𝑦, 𝑥〉 and C is the line segment from 𝑃0 = (4,0) 

to 𝑃1 = (0,4). 

 

Solution:  A sketch of the path C (in black, with its direction shown by an arrow) with the vectors 

of F show that the vector field generally points in the same direction as the direction of movement 

along C. Thus, we expect that the line integral will be positive. 

 

 
 

To find ∫ 𝐅 ∙ 𝑑𝐫
𝐶

, we follow the steps listed above. 

 

1) Parameterize the path C in variable 𝑡: 

 

𝐫(𝑡) = 〈4,0〉 + 𝑡〈−4,4〉 = 〈4 − 4𝑡, 4𝑡〉, 0 ≤ 𝑡 ≤ 1. 
 

2) Find 𝐫′(𝑡) =
𝑑

𝑑𝑡
𝐫(𝑡): 

 
𝑑

𝑑𝑡
𝐫(𝑡) =

𝑑

𝑑𝑡
〈4 − 4𝑡, 4𝑡〉 = 〈−4,4〉. 

 

3) Substitute 𝑥(𝑡) and 𝑦(𝑡) (from Step 1) into 𝐅(𝑥, 𝑦): 

 

𝐅(𝑥(𝑡), 𝑦(𝑡)) = 〈−4𝑡, 4 − 4𝑡〉. 
 

4) Find 𝐅 ∙ 𝑑𝐫: 

 

𝐅 ∙ 𝑑𝐫 = 〈−4𝑡, 4 − 4𝑡〉 ⋅ 〈−4,4〉 = (−4𝑡)(−4) + (4 − 4𝑡)(4) = 16. 
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5) Integrate the result from Step 4 with respect to 𝑡: 

 

∫ 𝐅 ∙ 𝑑𝐫
𝐶

= ∫ 16 𝑑𝑡
1

0

= 16. 

 

The positive quantity of the line integral suggests that particle is “helped” by the vector field as it 

moves along the path C. 

 

         

 

Example 45.2: Find ∫ 𝐅 ∙ 𝑑𝐫
𝐶

, where 𝐅(𝑥, 𝑦) = 〈𝑥𝑦, 1 − 𝑥〉 and C is the portion of the unit circle 

that begins at 𝑃0 = (1,0) and continues counterclockwise to 𝑃1 = (−1,0). 

 

Solution:  The path C is sketched and its direction noted. We see that the vectors in F generally 

point against (or orthogonal) to the direction of C. Thus, we expect that the line integral will be 

negative. 

 

 
 

Parametrize the path C by the usual parameterization of the unit circle. Note that this is half a 

circle, so the upper bound of 𝑡 is 𝜋: 

 

𝐫(𝑡) = 〈cos 𝑡 , sin 𝑡〉,    for    0 ≤ 𝑡 ≤ 𝜋. 
 

As a result, 𝑑𝐫 = 〈− sin 𝑡 , cos 𝑡〉 and 𝐅(𝑥(𝑡), 𝑦(𝑡)) = 〈cos 𝑡 sin 𝑡 , 1 − cos 𝑡〉. We then have 

 

𝐅 ∙ 𝑑𝐫 = 〈− sin 𝑡 , cos 𝑡〉 ⋅ 〈cos 𝑡 sin 𝑡 , 1 − cos 𝑡〉 = − sin2 𝑡 cos 𝑡 + cos 𝑡 − cos2 𝑡. 
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This is integrated, using u-du substitution for the first term and an identity for the third term: 

 

∫ 𝐅 ∙ 𝑑𝐫
𝐶

= ∫ (− sin2 𝑡 cos 𝑡 + cos 𝑡 − cos2 𝑡) 𝑑𝑡
𝜋

0

 

= ∫ (− sin2 𝑡 cos 𝑡 + cos 𝑡 − (
1

2
+

1

2
cos 2𝑡))  𝑑𝑡

𝜋

0

       {cos2 𝑡 =
1

2
+

1

2
cos 2𝑡 

= [−
1

3
sin3 𝑡 + sin 𝑡 −

1

2
𝑡 −

1

4
sin 2𝑡]

0

𝜋

 

 

Evaluated at the bounds, we have  

 

(−
1

3
sin3 𝜋 + sin 𝜋 −

1

2
𝜋 −

1

4
sin 2𝜋) − (−

1

3
sin3 0 + sin 0 −

1

2
(0) −

1

4
sin 2(0)), 

 

in which all but one term vanishes. Thus, the result is −
𝜋

2
. The particle is “hindered” by the vector 

field as it moves along the path C. 

 

         
 

Example 45.3: Find ∫ 𝐅 ∙ 𝑑𝐫
𝐶

, where 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑥, 𝑥𝑦, 𝑦 + 𝑧2〉 and C is the line segment from 

𝑃0 = (1,2, −4) to 𝑃1 = (3,5,1). 

 

Solution: The line segment C is parameterized as  

 

𝐫(𝑡) = 〈1 + 2𝑡, 2 + 3𝑡, −4 + 5𝑡〉,           0 ≤ 𝑡 ≤ 1. 
 

Now, find 𝐫′(𝑡) =
𝑑

𝑑𝑡
𝐫(𝑡):  

 
𝑑

𝑑𝑡
𝐫(𝑡) =

𝑑

𝑑𝑡
〈1 + 2𝑡, 2 + 3𝑡, −4 + 5𝑡〉 = 〈2,3,5〉. 

 

Substitute 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) into 𝐅(𝑥, 𝑦, 𝑧): 

 

𝐅(𝑥, 𝑦, 𝑧) = 〈𝑥, 𝑥𝑦, 𝑦 + 𝑧2〉 

𝐅(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = 〈1 + 2𝑡, (1 + 2𝑡)(2 + 3𝑡), (2 + 3𝑡) + (−4 + 5𝑡)2〉. 

 

Simplified, we have 

 

𝐅(𝑡) = 𝐅(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = 〈1 + 2𝑡, 6𝑡2 + 7𝑡 + 2, 25𝑡2 − 37𝑡 + 18〉. 
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Find 𝐅 ∙ 𝑑𝐫: 

 

𝐅 ∙ 𝑑𝐫 = 〈1 + 2𝑡, 6𝑡2 + 7𝑡 + 2, 25𝑡2 − 37𝑡 + 18〉 ⋅ 〈2,3,5〉 

= 2(1 + 2𝑡) + 3(6𝑡2 + 7𝑡 + 2) + 5(25𝑡2 − 37𝑡 + 18) 

= 143𝑡2 − 160𝑡 + 98. 

 

Now, integrate with respect to 𝑡: 

 

∫ (143𝑡2 − 160𝑡 + 98) 𝑑𝑡
1

0

= [
143

3
𝑡3 − 80𝑡2 + 98𝑡]

0

1

 

=
143

3
− 80 + 98 

=
197

3
 . 

 

Thus, ∫ 𝐅 ∙ 𝑑𝐫
𝐶

=
197

3
, a positive quantity, indicating that the vector field F “helped” the particle 

as it moved from 𝑃0 = (1,2, −4) to 𝑃1 = (3,5,1). 

 

         

Example 45.4: Evaluate ∫ 𝑧 𝑑𝑥 + (1 − 𝑥) 𝑑𝑦 + 2𝑦 𝑑𝑧
𝐶

, where C is the helix 𝐫(𝑡) = (cos 𝑡)𝐢 +

(sin 𝑡)𝐣 + 𝑡𝐤, 0 ≤ 𝑡 ≤ 2𝜋. 

 

Solution: In this form, we can infer the vector field F from the information within the integral: 

 

∫ 𝑧 𝑑𝑥 + (1 − 𝑥) 𝑑𝑦 + 2𝑦 𝑑𝑧
𝐶

. 

 

We see that 

 

𝑀(𝑥, 𝑦, 𝑧) = 𝑧,   𝑁(𝑥, 𝑦, 𝑧) = 1 − 𝑥   and   𝑃(𝑥, 𝑦, 𝑧) = 2𝑦, 

 

so that 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑧, 1 − 𝑥, 2𝑦〉.  
 

From the helix, we have 𝐫(𝑡) = (cos 𝑡)𝐢 + (sin 𝑡)𝐣 + 𝑡𝐤, so that 𝑥(𝑡) = cos 𝑡, 𝑦(𝑡) = sin 𝑡 and 

𝑧(𝑡) = 𝑡. Thus, 𝐅(𝑡) = 〈𝑧, 1 − 𝑥, 2𝑦〉 = 〈𝑡, 1 − cos 𝑡 , 2 sin 𝑡〉. 
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Also from the helix, we have 𝑑𝐫 =
𝑑

𝑑𝑡
〈cos 𝑡 , sin 𝑡 , 𝑡〉 = 〈− sin 𝑡 , cos 𝑡 , 1〉. The line integral is now 

evaluated: 

 

∫ 𝑧 𝑑𝑥 + (1 − 𝑥) 𝑑𝑦 + 2𝑦 𝑑𝑧
𝐶

= ∫ 𝐅 ∙ 𝑑𝐫
𝐶

 

= ∫ 〈𝑡, 1 − cos 𝑡 , 2 sin 𝑡〉
𝐶

⋅ 〈− sin 𝑡 , cos 𝑡 , 1〉 𝑑𝑡 

= ∫ (−𝑡 sin 𝑡 + (1 − cos 𝑡) cos 𝑡 + 2 sin 𝑡) 𝑑𝑡
2𝜋

0

 

= ∫ (−𝑡 sin 𝑡 + cos 𝑡 − cos2 𝑡 + 2 sin 𝑡) 𝑑𝑡
2𝜋

0

 . 

 

The antiderivative of −𝑡 sin 𝑡 is found by integration-by-parts and is 𝑡 cos 𝑡 − sin 𝑡, while the 

antiderivative of −cos2 𝑡 is found by utilizing the identity cos2 𝑡 =
1

2
+

1

2
cos 2𝑡. When simplified, 

we have 

 

∫ (−𝑡 sin 𝑡 + cos 𝑡 − cos2 𝑡 + 2 sin 𝑡) 𝑑𝑡
2𝜋

0

= [𝑡 cos 𝑡 − sin 𝑡 −
1

2
𝑡 −

1

4
sin 2𝑡 − 2 cos 𝑡]

0

2𝜋

 

 

Evaluated at the bounds, we have (2𝜋 − 𝜋 − 2) − (−2) = 𝜋. 

 

         
 

Example 45.5: Evaluate ∫ 𝑥𝑦 𝑑𝑥 + 𝑥2 𝑑𝑦
𝐶

, where C is the arc of the parabola 𝑦 = 𝑥2 from (0,0) 

to (2,4), followed by a straight line from (2,4) back to (0,0). 

 

Solution: From the integral form, we see that 𝐅(𝑥, 𝑦) = 〈𝑥𝑦, 𝑥2〉. The 

path C is composed of two smaller paths. Let 𝐶1 be the parabolic arc, 

and 𝐶2 be the line. Thus, the parametrizations are: 

 

𝐶1:  𝐫1(𝑡) = 〈𝑡, 𝑡2〉, 0 ≤ 𝑡 ≤ 2, 
𝐶2:  𝐫2(𝑡) = 〈2 − 2𝑡, 4 − 4𝑡〉, 0 ≤ 𝑡 ≤ 1. 

 

In such cases, the entire path C is the union of its sub-paths, so that  

 

∫ 𝐅 ∙ 𝑑𝐫
𝐶

= ∫ 𝐅 ∙ 𝑑𝐫
𝐶1∪𝐶2

 

= ∫ 𝐅 ∙ 𝑑𝐫1
𝐶1

+ ∫ 𝐅 ∙ 𝑑𝐫2
𝐶2

 . 
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For the parabolic arc, we have 𝑑𝐫1 = 〈1,2𝑡〉 and 𝐅(𝑡) = 〈𝑡3, 𝑡2〉. Thus, 

 

∫ 𝐅 ∙ 𝑑𝐫1
𝐶1

= ∫ 〈𝑡3, 𝑡2〉 ∙ 〈1,2𝑡〉 𝑑𝑡
𝐶1

 

= ∫ 3𝑡3 𝑑𝑡
2

0

 

= [
3

4
𝑡4]

0

2

= 12 . 

 

For the line, we have 𝑑𝐫2 = 〈−2, −4〉 and 𝐅(𝑡) = 〈8𝑡2 − 16𝑡 + 8,4𝑡2 − 8𝑡 + 4〉. Thus, 

 

∫ 𝐅 ∙ 𝑑𝐫2
𝐶2

= ∫ 〈8𝑡2 − 16𝑡 + 8, 4𝑡2 − 8𝑡 + 4〉 ∙ 〈−2, −4〉 𝑑𝑡
𝐶2

 

= ∫ (−32𝑡2 + 64𝑡 − 32) 𝑑𝑡
1

0

 

= [−
32

3
𝑡3 + 32𝑡2 − 32𝑡]

0

1

= −
32

3
 . 

 

Therefore, ∫ 𝑥𝑦 𝑑𝑥 + 𝑥2 𝑑𝑦
𝐶

= 12 + (−
32

3
) =

4

3
 . 

 

         


