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46. Vector Line Integrals: Flux 
 

A second form of a line integral can be defined to describe the flow of a medium through a 

permeable membrane. Let 𝐅(𝑥, 𝑦) = 〈𝑀(𝑥, 𝑦), 𝑁(𝑥, 𝑦)〉 be a vector field in 𝑅2, representing the 

flow of the medium, and let C be a directed path, representing the permeable membrane. The flux 

(flow) of F through C is given by the flux line integral 

 

∫ 𝐅 ⋅ 𝐧 𝑑𝑠
𝐶

. 

 

Here, n represents a unit normal vector to C. The orientation of n is important, since it will define 

the “positive” direction of the flow. There are two cases: 

 

 If C is a path with different starting and ending points, then n will point orthogonally to T, 

the unit tangent vector, “to the right”; that is, as one moves along C in the direction of T, 

then n points to the right of T. Another way to describe this is that n × T would be in the 

direction of positive z, or out of the sheet of paper toward the viewer. 

 If C is a simple closed loop (same starting and ending point, does not cross itself) that is 

traversed counterclockwise, then n points outward. Note that this also maintains the 

“pointing to the right” rule. 

 

 
 

Left: Path C with a direction defined. Unit tangent T points in the forward direction, and n is orthogonal to 

T to T’s right. Right: a simple closed loop path C in the counterclockwise orientation. T points in the forward 

direction, and n is orthogonal to T. Note that in all cases, n × T points up from this page. 

 

The underlying idea is to compare the direction of F to n at each point along the path C, which is 

segmented into equally-sized sub-segments for the moment. If F and n point in the same direction, 

then their dot product 𝐅 ⋅ 𝐧 is positive. If the two vectors point in opposite directions, then 𝐅 ⋅ 𝐧 is 

negative, and if the two vectors are orthogonal to one another, then 𝐅 ⋅ 𝐧 is zero. The integral then 

“sums” all such possible dot products, resulting in a value that represents positive net flow (if the 

value is positive), negative net flow (if the value is negative), or no net flow (if the value is zero). 
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If C is parameterized as 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡)〉, then recall that  

 

𝐓(𝑡) =
𝐫′(𝑡)

|𝐫′(𝑡)|
=

〈𝑥′(𝑡), 𝑦′(𝑡)〉

√(𝑥′(𝑡))
2

+ (𝑦′(𝑡))
2

 . 

 

Since n is a right-angle turn clockwise from T, then 

 

𝐧(𝑡) =
〈𝑦′(𝑡), −𝑥′(𝑡)〉

√(𝑥′(𝑡))
2

+ (𝑦′(𝑡))
2

 . 

 

 
 

Thus, the flux line integral can be rewritten in terms of 𝑡: 

 

∫ 𝐅 ⋅ 𝐧 𝑑𝑠
𝐶

= ∫ 𝐅(𝑥(𝑡), 𝑦(𝑡)) ⋅
〈𝑦′(𝑡), −𝑥′(𝑡)〉

√(𝑥′(𝑡))
2

+ (𝑦′(𝑡))
2

 √(𝑥′(𝑡))
2

+ (𝑦′(𝑡))
2

 𝑑𝑡
𝐶

 

 

The radicals cancel, and after taking the dot product, we have the short form 

 

∫ 𝐅 ⋅ 𝐧 𝑑𝑠
𝐶

= ∫ (𝑀
𝑑𝑦

𝑑𝑡
− 𝑁

𝑑𝑥

𝑑𝑡
) 𝑑𝑡

𝑏

𝑎

= ∫ 𝑀 𝑑𝑦 − 𝑁 𝑑𝑥
𝑏

𝑎

. 

 

Remember, despite the notation, this is an integral in variable 𝑡. 
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Example 46.1: Find the flux of 𝐅(𝑥, 𝑦) = 〈2,0〉 through the line segment from (3,0) to (0,3). 

 

Solution: The line segment C is parameterized first: 

 

𝐫(𝑡) = 〈3 − 3𝑡, 3𝑡〉   for   0 ≤ 𝑡 ≤ 1.      (See Example 12.2) 
 

Thus, 𝐫′(𝑡) = 〈−3,3〉. From this, we have 
𝑑𝑥

𝑑𝑡
= −3 and 

𝑑𝑦

𝑑𝑡
= 3. Since F is a constant vector field, 

no substitutions need to be made. The flux of 𝐅(𝑥, 𝑦) = 〈𝑀, 𝑁〉 = 〈2,0〉 through C is given by 

 

∫ 𝑀 𝑑𝑦 − 𝑁 𝑑𝑥
𝑏

𝑎

= ∫ ((2)(3) − (0)(−3)) 𝑑𝑡
1

0

= ∫ 6 𝑑𝑡
1

0

= 6. 

 

In one unit of time, 6 units of mass flow through C. This can be seen graphically as the area of the 

shaded region below: 

 

 
 

Left: Path C is shown, along with some vectors 𝐅(𝑥, 𝑦) = 〈2,0〉 in gray. Each of these vectors has a magnitude of 2 

units. Note that the vectors F cross C at a 45-degree angle, so that the component of these vectors in the direction of 

n is 2 √2⁄ . Right: The total flow is represented by the gray parallelogram, whose area is the base (length of C) 

multiplied by the height (the component of F in the direction of n). We have (3√2)(2 √2⁄ ) = 6. 

 

         
 

Example 46.2: Find the flux of 𝐅(𝑥, 𝑦) = 〈3𝑥𝑦, 𝑥 − 𝑦〉 through the parabolic arc 𝑦 = 𝑥2 between 

(−1,1) and (4,16). 

 

Solution: The parabolic arc is parameterized as  

 

𝐫(𝑡) = 〈𝑡, 𝑡2〉,     for     −1 ≤ 𝑡 ≤ 4. 

 

Thus, 𝐫′(𝑡) = 〈1,2𝑡〉. Furthermore,  

 

𝐅(𝑡) = 𝐅(𝑥(𝑡), 𝑦(𝑡)) = 〈3(𝑡)(𝑡2), (𝑡) − (𝑡2)〉 = 〈3𝑡3, 𝑡 − 𝑡2〉, 
 

where 3𝑥𝑦 = 3(𝑡)(𝑡2) = 3𝑡3 and 𝑥 − 𝑦 = (𝑡) − (𝑡2) = 𝑡 − 𝑡2. 
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Therefore, the flux of 𝐅(𝑥, 𝑦) = 〈3𝑥𝑦, 𝑥 − 𝑦〉 through the parabolic arc is 

 

∫ (3𝑡3)(2𝑡) − (𝑡 − 𝑡2)(1) 𝑑𝑡
4

−1

= ∫ (6𝑡4 + 𝑡2 − 𝑡) 𝑑𝑡
4

−1

= [
6

5
𝑡5 +

1

3
𝑡3 −

1

2
𝑡2]

−1

4

 

 

This simplifies to  

 

= (
6

5
(4)5 +

1

3
(4)3 −

1

2
(4)2) − (

6

5
(−1)5 +

1

3
(−1)3 −

1

2
(−1)2)  =

7465

6
 . 

 

About 1,244.167 units of mass flow through this membrane per unit of time. 

 

         
 

Example 46.3: Find the flux of 𝐅(𝑥, 𝑦) = 〈𝑥, 𝑦〉 through the line connecting (0,0) to (a,b). 

 

Solution: The line is parameterized as 𝐫(𝑡) = 〈𝑎𝑡, 𝑏𝑡〉 for 0 ≤ 𝑡 ≤ 1, and so 𝐫′(𝑡) = 〈𝑎, 𝑏〉. 

Furthermore, 𝐅(𝑡) = 𝐅(𝑥(𝑡), 𝑦(𝑡)) = 〈𝑎𝑡, 𝑏𝑡〉. Thus, the flux is 

 

𝑀 = 𝑎𝑡 𝑑𝑦 = 𝑏
𝑁 = 𝑏𝑡 𝑑𝑥 = 𝑎

 }       ∫ (𝑎𝑡)(𝑏) − (𝑏𝑡)(𝑎) 𝑑𝑡
1

0

= ∫ (𝑎𝑏𝑡 − 𝑎𝑏𝑡) 𝑑𝑡
1

0

= 0. 

 

This result is not surprising: any line connecting (0,0) to (a,b) is parallel to the stream-lines formed 

by the vector field 𝐅(𝑥, 𝑦) = 〈𝑥, 𝑦〉. At no time (or place) does F ever pass through such a line. 
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Example 46.4: Find the flux of 𝐅(𝑥, 𝑦) = 〈3𝑥, 5𝑦〉 through the circle 𝑥2 + 𝑦2 = 1, traversed 

counterclockwise. 

 

Solution: The circle is parameterized as 𝐫(𝑡) = 〈cos 𝑡 , sin 𝑡〉 for 0 ≤ 𝑡 ≤ 2𝜋. Thus, 𝐫′(𝑡) =
〈− sin 𝑡 , cos 𝑡〉. The vector field is written in terms of 𝑡: 

 

𝐅(𝑡) = 𝐅(𝑥(𝑡), 𝑦(𝑡)) = 〈3 cos 𝑡 , 5 sin 𝑡〉. 
 

Thus, we have 𝑀 = 3 cos 𝑡, 𝑁 = 5 sin 𝑡, 
𝑑𝑦

𝑑𝑡
= cos 𝑡 and 

𝑑𝑥

𝑑𝑡
= − sin 𝑡: 

 

∫ ((3 cos 𝑡)(cos 𝑡) − (5 sin 𝑡)(− sin 𝑡)) 𝑑𝑡
2𝜋

0

= ∫ (3 cos2 𝑡 + 5 sin2 𝑡) 𝑑𝑡
2𝜋

0

. 

 

We use the identities  cos2 𝑡 =
1

2
+

1

2
cos 2𝑡  and  sin2 𝑡 =

1

2
−

1

2
cos 2𝑡  to simplify the integrand: 

 

∫ (3 cos2 𝑡 + 5 sin2 𝑡) 𝑑𝑡
2𝜋

0

= ∫ (3 (
1

2
+

1

2
cos 2𝑡) + 5 (

1

2
−

1

2
cos 2𝑡))  𝑑𝑡

2𝜋

0

 

= ∫ (4 − cos 2𝑡) 𝑑𝑡
2𝜋

0

 

= [4𝑡 −
1

2
sin 2𝑡]

0

2𝜋

= 8𝜋. 

 

 

         
 

The flux of 𝐅 = 〈𝑀, 𝑁〉 through a simple closed loop C traversed counterclockwise, such as in 

Example 46.4, can be calculated using the following formula: 

 

∫ 𝐅 ⋅ 𝐧 𝑑𝑠
𝐶

= ∬ (
𝜕𝑀

𝜕𝑥
+

𝜕𝑁

𝜕𝑦
) 𝑑𝐴

𝑅

, 

 

where R is the region enclosed by C. This is called the Divergence Theorem in 𝑅2. The general 

Divergence Theorem is discussed later in Section 54. 

 

         
 

Example 46.5: Use the Divergence Theorem to find the flux of 𝐅(𝑥, 𝑦) = 〈5𝑦2, √𝑒𝑥〉 through the 

triangle traversed from vertices (1,1), (5,1) and (3,5), back to (1,1), in that order. 

 

Solution: Note that 
𝜕𝑀

𝜕𝑥
+

𝜕𝑁

𝜕𝑦
= 0. Thus, the net flux is 0. This means that equal amounts of mass 

are entering and exiting through the boundaries per unit of time. 
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Example 46.6: Use the Divergence Theorem to find the flux of 𝐅(𝑥, 𝑦) = 〈3𝑥, 5𝑦〉 through the 

circle 𝑥2 + 𝑦2 = 1, traversed counterclockwise. (This is a repeat of Example 46.4) 

 

Solution: Since 𝑀(𝑥, 𝑦) = 3𝑥, then 
𝜕𝑀

𝜕𝑥
= 3, and since 𝑁(𝑥, 𝑦) = 5𝑦, then 

𝜕𝑁

𝜕𝑦
= 5. Thus, we have 

 

∬ (
𝜕𝑀

𝜕𝑥
+

𝜕𝑁

𝜕𝑦
) 𝑑𝐴

𝑅

= ∬ (3 + 5) 𝑑𝐴
𝑅

= ∬ 8 𝑑𝐴
𝑅

= 8 ∬ 𝑑𝐴
𝑅

. 

 

Note that ∬ 𝑑𝐴
𝑅

 represents the area of R. Since R is a circle of radius 1, its area is 𝜋(1)2 = 𝜋. 

Thus, the flux of 𝐅(𝑥, 𝑦) = 〈3𝑥, 5𝑦〉 through the circle 𝑥2 + 𝑦2 = 1 is  

 

8 ∬ 𝑑𝐴
𝑅

= 8𝜋. 

 

         
 

Example 46.7: Use the Divergence Theorem to find the flux of 𝐅(𝑥, 𝑦) = 〈𝑥𝑦, 3〉 through the 

rectangle traversed from (0,0) to (0,3) to (6,3) to (6,0) to (0,0). 

 

Solution: The path C is a rectangle traced clockwise, not counterclockwise as is required by the 

Divergence Theorem. We can proceed, but must negate the final result to account for the clockwise 

movement. We have 

 

∬ (
𝜕𝑀

𝜕𝑥
+

𝜕𝑁

𝜕𝑦
) 𝑑𝐴

𝑅

= ∫ ∫ 𝑦 𝑑𝑦
3

0

𝑑𝑥
6

0

. 

 

The inside integral is  

 

∫ 𝑦 𝑑𝑦
3

0

= [
1

2
𝑦2]

0

3

=
9

2
 . 

 

The outside integral is  

 

∫ (
9

2
) 𝑑𝑥

6

0

= (
9

2
) (6) = 27. 

 

Since the path around the rectangle is traced clockwise, we negate the result: 

 

∫ 𝐅 ⋅ 𝐧 𝑑𝑠
𝐶

= −27. 

 

         


