46. Vector Line Integrals: Flux

A second form of a line integral can be defined to describe the flow of a medium through a permeable membrane. Let $\mathbf{F}(x, y)=\langle M(x, y), N(x, y)\rangle$ be a vector field in R^{2}, representing the flow of the medium, and let C be a directed path, representing the permeable membrane. The flux (flow) of \mathbf{F} through C is given by the flux line integral

$$
\int_{C} \mathbf{F} \cdot \mathbf{n} d s .
$$

Here, \mathbf{n} represents a unit normal vector to C. The orientation of \mathbf{n} is important, since it will define the "positive" direction of the flow. There are two cases:

- If C is a path with different starting and ending points, then \mathbf{n} will point orthogonally to \mathbf{T}, the unit tangent vector, "to the right"; that is, as one moves along C in the direction of \mathbf{T}, then \mathbf{n} points to the right of \mathbf{T}. Another way to describe this is that $\mathbf{n} \times \mathbf{T}$ would be in the direction of positive z, or out of the sheet of paper toward the viewer.
- If C is a simple closed loop (same starting and ending point, does not cross itself) that is traversed counterclockwise, then \mathbf{n} points outward. Note that this also maintains the "pointing to the right" rule.

Left: Path C with a direction defined. Unit tangent \mathbf{T} points in the forward direction, and \mathbf{n} is orthogonal to T to T's right. Right: a simple closed loop path C in the counterclockwise orientation. T points in the forward direction, and \mathbf{n} is orthogonal to \mathbf{T}. Note that in all cases, $\mathbf{n} \times \mathbf{T}$ points up from this page.

The underlying idea is to compare the direction of \mathbf{F} to \mathbf{n} at each point along the path C, which is segmented into equally-sized sub-segments for the moment. If \mathbf{F} and \mathbf{n} point in the same direction, then their dot product $\mathbf{F} \cdot \mathbf{n}$ is positive. If the two vectors point in opposite directions, then $\mathbf{F} \cdot \mathbf{n}$ is negative, and if the two vectors are orthogonal to one another, then $\mathbf{F} \cdot \mathbf{n}$ is zero. The integral then "sums" all such possible dot products, resulting in a value that represents positive net flow (if the value is positive), negative net flow (if the value is negative), or no net flow (if the value is zero).

If C is parameterized as $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, then recall that

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle}{\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}}
$$

Since \mathbf{n} is a right-angle turn clockwise from \mathbf{T}, then

$$
\mathbf{n}(t)=\frac{\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle}{\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}}
$$

$$
\begin{aligned}
& \text { If } \mathbf{T}=\langle d x, d y\rangle \text {, then } \\
& \text { one } 90 \text {-degree clock- } \\
& \text { wise turn gives } \\
& \mathbf{n}=\langle d y,-d x\rangle .
\end{aligned}
$$

Thus, the flux line integral can be rewritten in terms of t :

$$
\int_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{C} \mathbf{F}(x(t), y(t)) \cdot \frac{\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle}{\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

The radicals cancel, and after taking the dot product, we have the short form

$$
\int_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{a}^{b}\left(M \frac{d y}{d t}-N \frac{d x}{d t}\right) d t=\int_{a}^{b} M d y-N d x
$$

Remember, despite the notation, this is an integral in variable t.

Example 46.1: Find the flux of $\mathbf{F}(x, y)=\langle 2,0\rangle$ through the line segment from $(3,0)$ to $(0,3)$.
Solution: The line segment C is parameterized first:

$$
\mathbf{r}(t)=\langle 3-3 t, 3 t\rangle \text { for } 0 \leq t \leq 1 . \quad \text { (See Example 12.2) }
$$

Thus, $\mathbf{r}^{\prime}(t)=\langle-3,3\rangle$. From this, we have $\frac{d x}{d t}=-3$ and $\frac{d y}{d t}=3$. Since \mathbf{F} is a constant vector field, no substitutions need to be made. The flux of $\mathbf{F}(x, y)=\langle M, N\rangle=\langle 2,0\rangle$ through C is given by

$$
\int_{a}^{b} M d y-N d x=\int_{0}^{1}((2)(3)-(0)(-3)) d t=\int_{0}^{1} 6 d t=6
$$

In one unit of time, 6 units of mass flow through C. This can be seen graphically as the area of the shaded region below:

Left: Path C is shown, along with some vectors $\mathbf{F}(x, y)=\langle 2,0\rangle$ in gray. Each of these vectors has a magnitude of 2 units. Note that the vectors \mathbf{F} cross C at a 45 -degree angle, so that the component of these vectors in the direction of \mathbf{n} is $2 / \sqrt{2}$. Right: The total flow is represented by the gray parallelogram, whose area is the base (length of C) multiplied by the height (the component of \mathbf{F} in the direction of \mathbf{n}). We have $(3 \sqrt{2})(2 / \sqrt{2})=6$.

Example 46.2: Find the flux of $\mathbf{F}(x, y)=\langle 3 x y, x-y\rangle$ through the parabolic arc $y=x^{2}$ between $(-1,1)$ and $(4,16)$.

Solution: The parabolic arc is parameterized as

$$
\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle, \quad \text { for } \quad-1 \leq t \leq 4
$$

Thus, $\mathbf{r}^{\prime}(t)=\langle 1,2 t\rangle$. Furthermore,

$$
\mathbf{F}(t)=\mathbf{F}(x(t), y(t))=\left\langle 3(t)\left(t^{2}\right),(t)-\left(t^{2}\right)\right\rangle=\left\langle 3 t^{3}, t-t^{2}\right\rangle
$$

where $3 x y=3(t)\left(t^{2}\right)=3 t^{3}$ and $x-y=(t)-\left(t^{2}\right)=t-t^{2}$.

Therefore, the flux of $\mathbf{F}(x, y)=\langle 3 x y, x-y\rangle$ through the parabolic arc is

$$
\int_{-1}^{4}\left(3 t^{3}\right)(2 t)-\left(t-t^{2}\right)(1) d t=\int_{-1}^{4}\left(6 t^{4}+t^{2}-t\right) d t=\left[\frac{6}{5} t^{5}+\frac{1}{3} t^{3}-\frac{1}{2} t^{2}\right]_{-1}^{4}
$$

This simplifies to

$$
=\left(\frac{6}{5}(4)^{5}+\frac{1}{3}(4)^{3}-\frac{1}{2}(4)^{2}\right)-\left(\frac{6}{5}(-1)^{5}+\frac{1}{3}(-1)^{3}-\frac{1}{2}(-1)^{2}\right)=\frac{7465}{6} .
$$

About 1,244.167 units of mass flow through this membrane per unit of time.

Example 46.3: Find the flux of $\mathbf{F}(x, y)=\langle x, y\rangle$ through the line connecting $(0,0)$ to (a, b).
Solution: The line is parameterized as $\mathbf{r}(t)=\langle a t, b t\rangle$ for $0 \leq t \leq 1$, and so $\mathbf{r}^{\prime}(t)=\langle a, b\rangle$. Furthermore, $\mathbf{F}(t)=\mathbf{F}(x(t), y(t))=\langle a t, b t\rangle$. Thus, the flux is

$$
\begin{aligned}
& M=a t \quad d y=b \\
& N=b t
\end{aligned} \quad d x=a, \quad \int_{0}^{1}(a t)(b)-(b t)(a) d t=\int_{0}^{1}(a b t-a b t) d t=0
$$

This result is not surprising: any line connecting $(0,0)$ to (a, b) is parallel to the stream-lines formed by the vector field $\mathbf{F}(x, y)=\langle x, y\rangle$. At no time (or place) does \mathbf{F} ever pass through such a line.

Example 46.4: Find the flux of $\mathbf{F}(x, y)=\langle 3 x, 5 y\rangle$ through the circle $x^{2}+y^{2}=1$, traversed counterclockwise.

Solution: The circle is parameterized as $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$ for $0 \leq t \leq 2 \pi$. Thus, $\mathbf{r}^{\prime}(t)=$ $\langle-\sin t, \cos t\rangle$. The vector field is written in terms of t :

$$
\mathbf{F}(t)=\mathbf{F}(x(t), y(t))=\langle 3 \cos t, 5 \sin t\rangle .
$$

Thus, we have $M=3 \cos t, N=5 \sin t, \frac{d y}{d t}=\cos t$ and $\frac{d x}{d t}=-\sin t$:

$$
\int_{0}^{2 \pi}((3 \cos t)(\cos t)-(5 \sin t)(-\sin t)) d t=\int_{0}^{2 \pi}\left(3 \cos ^{2} t+5 \sin ^{2} t\right) d t
$$

We use the identities $\cos ^{2} t=\frac{1}{2}+\frac{1}{2} \cos 2 t$ and $\sin ^{2} t=\frac{1}{2}-\frac{1}{2} \cos 2 t$ to simplify the integrand:

$$
\begin{aligned}
\int_{0}^{2 \pi}\left(3 \cos ^{2} t+5 \sin ^{2} t\right) d t & =\int_{0}^{2 \pi}\left(3\left(\frac{1}{2}+\frac{1}{2} \cos 2 t\right)+5\left(\frac{1}{2}-\frac{1}{2} \cos 2 t\right)\right) d t \\
& =\int_{0}^{2 \pi}(4-\cos 2 t) d t \\
& =\left[4 t-\frac{1}{2} \sin 2 t\right]_{0}^{2 \pi}=8 \pi
\end{aligned}
$$

The flux of $\mathbf{F}=\langle M, N\rangle$ through a simple closed loop C traversed counterclockwise, such as in Example 46.4, can be calculated using the following formula:

$$
\int_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d A,
$$

where R is the region enclosed by C. This is called the Divergence Theorem in R^{2}. The general Divergence Theorem is discussed later in Section 54.

Example 46.5: Use the Divergence Theorem to find the flux of $\mathbf{F}(x, y)=\left\langle 5 y^{2}, \sqrt{e^{x}}\right\rangle$ through the triangle traversed from vertices $(1,1),(5,1)$ and $(3,5)$, back to $(1,1)$, in that order.

Solution: Note that $\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}=0$. Thus, the net flux is 0 . This means that equal amounts of mass are entering and exiting through the boundaries per unit of time.

Example 46.6: Use the Divergence Theorem to find the flux of $\mathbf{F}(x, y)=\langle 3 x, 5 y\rangle$ through the circle $x^{2}+y^{2}=1$, traversed counterclockwise. (This is a repeat of Example 46.4)

Solution: Since $M(x, y)=3 x$, then $\frac{\partial M}{\partial x}=3$, and since $N(x, y)=5 y$, then $\frac{\partial N}{\partial y}=5$. Thus, we have

$$
\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d A=\iint_{R}(3+5) d A=\iint_{R} 8 d A=8 \iint_{R} d A
$$

Note that $\iint_{R} d A$ represents the area of R. Since R is a circle of radius 1 , its area is $\pi(1)^{2}=\pi$. Thus, the flux of $\mathbf{F}(x, y)=\langle 3 x, 5 y\rangle$ through the circle $x^{2}+y^{2}=1$ is

$$
8 \iint_{R} d A=8 \pi .
$$

Example 46.7: Use the Divergence Theorem to find the flux of $\mathbf{F}(x, y)=\langle x y, 3\rangle$ through the rectangle traversed from $(0,0)$ to $(0,3)$ to $(6,3)$ to $(6,0)$ to $(0,0)$.

Solution: The path C is a rectangle traced clockwise, not counterclockwise as is required by the Divergence Theorem. We can proceed, but must negate the final result to account for the clockwise movement. We have

$$
\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d A=\int_{0}^{6} \int_{0}^{3} y d y d x
$$

The inside integral is

$$
\int_{0}^{3} y d y=\left[\frac{1}{2} y^{2}\right]_{0}^{3}=\frac{9}{2}
$$

The outside integral is

$$
\int_{0}^{6}\left(\frac{9}{2}\right) d x=\left(\frac{9}{2}\right)(6)=27
$$

Since the path around the rectangle is traced clockwise, we negate the result:

$$
\int_{C} \mathbf{F} \cdot \mathbf{n} d s=-27
$$

