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32. Method of Lagrange Multipliers 
 
The Method of Lagrange Multipliers is a generalized approach to solving 

constrained optimization problems. Assume that we are seeking to optimize a 

function 𝑧 = 𝑓(𝑥, 𝑦) subject to a “path” constraint defined implicitly by 

𝑔(𝑥, 𝑦) = 𝑐. The process usually follows these steps: 

 

1. Define a function 𝐿(𝑥, 𝑦, 𝜆) = 𝑓(𝑥, 𝑦) − 𝜆(𝑔(𝑥, 𝑦) − 𝑐). 

2. Find the partial derivatives 𝐿𝑥, 𝐿𝑦 and 𝐿𝜆. Note that 𝐿𝜆 = −𝑔(𝑥, 𝑦) + 𝑐. 

3. Set these partial derivatives to 0. Note that 𝐿𝜆 = 0 is the same as 𝑔(𝑥, 𝑦) =
𝑐, the original path constraint. Also note any restrictions on x and y, as it 

may be necessary to consider locations where the derivative fails to exist. 

4. Isolate the 𝜆 in the equations 𝐿𝑥 = 0 and 𝐿𝑦 = 0, then equate the two 

expressions. This will “drop out” the 𝜆, leaving an equation in x and y only. 

If possible, isolate x or y. 

5. Substitute the result from step 4 into the equation 𝑔(𝑥, 𝑦) = 𝑐, which will 

now be a single-variable equation. Solve for the remaining variable. 

6. Back substitute to find corresponding values for the other variable, and for 

z. 

7. Compare z values. The smallest will be a minimum, the largest a maximum. 

If there is just one z value, then other observations, such as cross-sections, 

may be needed to determine whether the point is a minimum or maximum. 

 

The following examples illustrate possible situations that may occur. 

 

 •  •  •  •  

 

Example 32.1: Find the minimum value of 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 2𝑥 − 2𝑦 

subject to the constraint 𝑥 + 2𝑦 = 4. 

 

Solution: To the right is a 

contour map in 𝑅2 of the surface 

defined by 𝑓, and the constraint 

𝑥 + 2𝑦 = 4 shown as a line. The 

actual surface is a paraboloid 

that opens up and has a 

minimum point at (1,1, −2), its 

vertex. The path, when 

conformed to the surface, is a 

cross-section of the paraboloid, 

itself a parabola. Thus, by 

inspecting the geometry of the 

problem, the extreme point on 

this path/parabola will be a 

minimum point. 
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Note that the path is slightly off-set from the vertex. It is reasonable to assume 

that the lowest point on the constraint path will be near the vertex, but clearly 

cannot be at the paraboloid’s vertex. 

 

First, create a new function 𝐿, clearing parentheses at the end: 

 

𝐿(𝑥, 𝑦, 𝜆) = 𝑓(𝑥, 𝑦) − 𝜆(𝑔(𝑥, 𝑦) − 𝑐) 

𝐿(𝑥, 𝑦, 𝜆) = 𝑥2 + 𝑦2 − 2𝑥 − 2𝑦 − 𝜆(𝑥 + 2𝑦 − 4) 

𝐿(𝑥, 𝑦, 𝜆) = 𝑥2 + 𝑦2 − 2𝑥 − 2𝑦 − 𝜆𝑥 − 2𝜆𝑦 + 4𝜆. 

 

Next, find its partial derivatives: 

 

𝐿𝑥 = 2𝑥 − 2 − 𝜆 

𝐿𝑦 = 2𝑦 − 2 − 2𝜆 

𝐿𝜆 = −𝑥 − 2𝑦 + 4. 

 

Now, set these to 0: 

 

2𝑥 − 2 − 𝜆 = 0     (𝟏) 

2𝑦 − 2 − 2𝜆 = 0     (𝟐) 

−𝑥 − 2𝑦 + 4 = 0.    (𝟑) 

 

In equations (1) and (2), isolate the 𝜆: 

 

𝜆 = 2𝑥 − 2      and      𝜆 = 𝑦 − 1. 
 

There are no restrictions on x or y. Now, equate and simplify. Note that 𝜆 is no 

longer present. 

 

2𝑥 − 2 = 𝑦 − 1,        which gives         𝑦 = 2𝑥 − 1. 
 

Note that equation (3) from above is the same as the constraint 𝑥 + 2𝑦 = 4. 

Substitute the equation 𝑦 = 2𝑥 − 1 into the simplified form of equation (3), and 

solve for x: 

 

𝑥 + 2(2𝑥 − 1) = 4 

5𝑥 − 2 = 4 

5𝑥 = 6 

𝑥 =
6

5
 . 
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Find y by substituting 𝑥 =
6

5
 into the equation 𝑦 = 2𝑥 − 1: 

 

𝑦 = 2 (
6

5
) − 1 =

7

5
 . 

 

Lastly, find z using the original function 𝑓: 

 

𝑓 (
6

5
,
7

5
) = (

6

5
)

2

+ (
7

5
)

2

− 2 (
6

5
) − 2 (

7

5
) = −

8

5
 . 

 

The minimum point of 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 2𝑥 − 2𝑦 subject to the 

constraint 𝑥 + 2𝑦 = 4 is  

 

(
6

5
,
7

5
, −

8

5
). 

 

This seems to agree with our assumption that it would be “close” to the surface’s 

minimum at (1,1, −2), its component values each a little higher than those of 

the vertex. 
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Example 32.2: Let 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 2𝑥 − 2𝑦. Find the minimum 

value of 𝑓 subject to the constraint 𝑥2 + 𝑦2 = 4. 

 

Solution: This is the same surface as in the previous example. However, the 

constraint path is a circle of radius 2 (as viewed on the xy-plane). When 

conformed to the surface 𝑓, the path will rise and fall along with the surface. 

Observing the path (in bold) in relation to the contours, we can estimate where 

the path’s lowest point may be, and where its highest point may be: 

 

 
 

Using the Method of Lagrange Multipliers, we start by building function 𝐿: 

 

𝐿(𝑥, 𝑦, 𝜆) = 𝑥2 + 𝑦2 − 2𝑥 − 2𝑦 − 𝜆(𝑥2 + 𝑦2 − 4) 

𝐿(𝑥, 𝑦, 𝜆) = 𝑥2 + 𝑦2 − 2𝑥 − 2𝑦 − 𝜆𝑥2 − 𝜆𝑦2 + 4𝜆.     (Simplified) 

 

Now find the partial derivatives: 

 

𝐿𝑥 = 2𝑥 − 2 − 2𝜆𝑥 

𝐿𝑦 = 2𝑦 − 2 − 2𝜆𝑦 

𝐿𝜆 = −𝑥2 − 𝑦2 + 4. 
 

Set each partial derivative to 0. Again, note that 𝐿𝜆 = 0 (Equation (3)) is the 

constraint path: 

 

2𝑥 − 2 − 2𝜆𝑥 = 0     (𝟏) 

2𝑦 − 2 − 2𝜆𝑦 = 0     (𝟐) 

𝑥2 + 𝑦2 = 4.    (𝟑) 
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Isolate 𝜆 in equations (1) and (2), then equate. Note any restrictions on the 

variables: 

 

𝜆 =
𝑥 − 1

𝑥
    and    𝜆 =

𝑦 − 1

𝑦
,     so that    

𝑥 − 1

𝑥
=

𝑦 − 1

𝑦
    (𝑥, 𝑦 ≠ 0). 

 

Clearing fractions, we have 

 

𝑦(𝑥 − 1) = 𝑥(𝑦 − 1) 

𝑥𝑦 − 𝑦 = 𝑥𝑦 − 𝑥 

𝑦 = 𝑥. 
 

Substitute 𝑦 = 𝑥 into (3): 

 

𝑥2 + 𝑥2 = 4 

2𝑥2 = 4 

𝑥2 = 2 

𝑥 = ±√2. 
 

Since 𝑦 = 𝑥, we have 𝑦 = √2 when 𝑥 = √2, and 𝑦 = −√2 when 𝑥 = −√2. 

There are two critical points: 

 

(√2, √2, 𝑓(√2, √2))    and   (−√2, −√2, 𝑓(−√2, − √2)). 

 

We now evaluate the function at each of these x and y values: 

 

𝑓(√2, √2) = (√2)
2

+ (√2)
2

− 2√2 − 2√2 = 4 − 4√2 ≈ −1.657, 

𝑓(−√2, − √2) = (−√2)
2

+ (−√2)
2

+ 2√2 + 2√2 = 4 + 4√2 ≈ 9.657. 
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By observation,  

 

(√2, √2, 𝑓(√2, √2)) ≈ (1.414, 1.414, −1.657) 

 

is the minimum point (A) on the surface subject to the constraint, while 

 

(−√2, −√2, 𝑓(−√2, − √2)) ≈ (−1.414, −1.414, 9.657) 

 

is the maximum point (B) on the surface subject to the constraint. We also see 

that these points are where we surmised they would be: the minimum point on 

the path is closest to the minimum point of the entire surface, while the 

maximum point is farthest away. 

 

The restrictions that 𝑥 ≠ 0 or 𝑦 ≠ 0 ultimately did not play a role in this 

example. In the next example, it does. 

 

 •  •  •  •  

 

Example 32.3: Let 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 2𝑥. Find the minimum and 

maximum values of 𝑓 subject to the constraint 𝑥2 + 𝑦2 = 4. 

 

Solution: The surface as defined by 𝑓 is a paraboloid with vertex at (1,0, −1). 

Since the paraboloid opens upward, the vertex is the absolute minimum point 

on the surface. We show the contour map and identify the path constraint (in 

bold), which is the circle of radius 2, centered at the origin. It is reasonable to 

infer that the minimum point on the surface subject to the constraint is probably 

the point closest to the vertex (denoted A), and the maximum point is farthest 

away from the vertex (denoted B) given that the surface rises the farther away 

one moves from the origin. 
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We build function 𝐿: 

 

𝐿(𝑥, 𝑦, 𝜆) = 𝑥2 + 𝑦2 − 2𝑥 − 𝜆𝑥2 − 𝜆𝑦2 + 4𝜆. 
 

Now find the partial derivatives: 

 

𝐿𝑥 = 2𝑥 − 2 − 2𝜆𝑥 

𝐿𝑦 = 2𝑦 − 2𝜆𝑦 

𝐿𝜆 = −𝑥2 − 𝑦2 + 4. 
 

Set each partial derivative to 0: 

 

2𝑥 − 2 − 2𝜆𝑥 = 0     (𝟏) 

2𝑦 − 2𝜆𝑦 = 0     (𝟐) 

𝑥2 + 𝑦2 = 4.    (𝟑) 

 

Isolate 𝜆 in equations (1) and (2), then equate. Note any restrictions on the 

variables: 

 

𝜆 =
𝑥 − 1

𝑥
    and    𝜆 =

𝑦

𝑦
= 1,     so that    

𝑥 − 1

𝑥
= 1    (𝑥, 𝑦 ≠ 0) 

 

Simplifying 
𝑥−1

𝑥
= 1, we get 𝑥 − 1 = 𝑥, or 0 = −1, which is a false statement. 

It seems the process has stalled. However, it has not. The nature of the algebra 

in this step forces 𝑥 ≠ 0 and 𝑦 ≠ 0, but in truth, the surface and the constraint 

are defined when 𝑥 = 0 or 𝑦 = 0. In equation (2), which is 2𝑦 − 2𝜆𝑦 = 0, note 

that 𝑦 = 0 is also a solution. 

 

Substituting this into equation (3), the original constraint, we can solve for x: 

 

𝑥2 + 02 = 4 

𝑥2 = 4 

𝑥 = ±2. 
 

Thus,we have two critical points, (2,0, 𝑓(2,0)) and (−2,0, 𝑓(−2,0)). The z 

values are 

 

𝑓(2,0) = 22 + 02 − 2(2) = 0   &    𝑓(−2,0) = (−2)2 + 02 − 2(−2) = 8. 
 

The point (2,0,0) is the minimum point (A) on the surface subject to the 

constraint, and the point (−2,0,8) is the maximum point (B) on the surface 

subject to the constraint. This agrees with our original intuition. 
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Graph for example 32.3 

 

 •  •  •  •  

 

The previous three examples have been efficient, in that the algebra has not been 

too difficult. In the next example, we encounter a situation where the algebra 

may pose a challenge. 

 

Example 32.4: Let 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 4𝑥 − 2𝑦. Find the minimum and 

maximum values of 𝑓 subject to the constraint 2𝑥2 + 𝑦2 = 4. 

 

Solution: The surface is a parabolid opening upward. Its vertex, (−2,1, −5), is 

the absolute minimum point on this surface. The path is an ellipse centered at 

the origin with a major axis of 4 units in the y direction (±2 units from the 

origin) and a minor axis of 2√2 units in the x direction (±√2 units from the 

origin). We label what we think may be the location of the minimum point (A) 

of the surface subject to the constrain, and what we think may be the maximum 

point (B) of the surface, subject to the constraint. 
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We follow the same steps as before: 

 

𝐿(𝑥, 𝑦, 𝜆) = 𝑥2 + 𝑦2 + 4𝑥 − 2𝑦 − 2𝜆𝑥2 − 𝜆𝑦2 + 4𝜆. 
 

The partial derivatives are 

 

𝐿𝑥 = 2𝑥 + 4 − 4𝜆𝑥 

𝐿𝑦 = 2𝑦 − 2 − 2𝜆𝑦 

𝐿𝜆 = −2𝑥2 − 𝑦2 + 4. 
 

Setting each to 0, we have a system: 

 

2𝑥 + 4 − 4𝜆𝑥 = 0     (𝟏) 

2𝑦 − 2 − 2𝜆𝑦 = 0     (𝟐) 

2𝑥2 + 𝑦2 = 4.    (𝟑) 

 

Isolate 𝜆 in equations (1) and (2), then equate. Note any restrictions on the 

variables: 

 

𝜆 =
𝑥 + 2

2𝑥
    and    𝜆 =

𝑦 − 1

𝑦
,     so that    

𝑥 + 2

2𝑥
=

𝑦 − 1

𝑦
    (𝑥, 𝑦 ≠ 0) 

 

Clearing fractions, we have 

 

𝑦(𝑥 + 2) = 2𝑥(𝑦 − 1) 

𝑥𝑦 + 2𝑦 = 2𝑥𝑦 − 2𝑥 

2𝑦 − 𝑥𝑦 = −2𝑥 

𝑦(2 − 𝑥) = −2𝑥 

𝑦 =
2𝑥

𝑥 − 2
        (𝑥 ≠ 2). 

 

Substitute this into (3): 

 

2𝑥2 + (
2𝑥

𝑥 − 2
)

2

= 4. 

 

Clear fractions: 

 

(𝑥 − 2)22𝑥2 + (2𝑥)2 = 4(𝑥 − 2)2. 
 

Expanding by multiplication and collecting terms, we have 

 

𝑥4 − 4𝑥3 + 4𝑥2 + 8𝑥 − 8 = 0. 
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It is difficult to isolate x in a quartic polynomial. Instead, the roots are 

determined graphically. The roots are 𝑥 ≈ −1.3 and 𝑥 ≈ 0.88: 

 

 
 

Now use the equation 𝑦 =
2𝑥

𝑥−2
 to determine y at each x-value: 

 

𝑦 =
2(−1.3)

(−1.3) − 2
≈ 0.79     and      𝑦 =

2(0.88)

(0.88) − 2
≈ −1.57. 

 

We then find the z-values: 

 

𝑧 = 𝑓(−1.3,0.79) = (−1.3)2 + (0.79)2 + 4(−1.3) − 2(0.79) ≈ −4.47, 
𝑧 = 𝑓(0.88, −1.57) = (0.88)2 + (−1.57)2 + 4(0.88) − 2(−1.57) ≈ 9.89. 

 

Thus, the point (−1.3, 0.79, −4.47) is the minimum point (A) on the surface 

subject to the constraint, and the point (0.88, −1.57,9.89) is the maximum point 

(B) on the surface subject to the constraint. 

 

 
 

The restrictions imposed on x and y during the algebra steps did not play a role 

in finding the solutions. 
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Lagrange Multiplies can be extended into situations with three or more 

variables. 

 

Example 32.5: Consider the portion of the plane 2𝑥 + 4𝑦 + 5𝑧 = 20 in the first 

octant. Find the point on the plane closest to the origin. (This is the same as 

Example 30.4) 

 

Solution: If (𝑥, 𝑦, 𝑧) is a point on the plane, then its distance from the origin is 

𝑑(𝑥, 𝑦, 𝑧) = √𝑥2 + 𝑦2 + 𝑧2. Using the constraint 2𝑥 + 4𝑦 + 5𝑧 − 20 = 0, we 

build the function 𝐿: 

 

𝐿(𝑥, 𝑦, 𝑧, 𝜆) = √𝑥2 + 𝑦2 + 𝑧2 − 𝜆(2𝑥 + 4𝑦 + 5𝑧 − 20). 
 

Then we find partial derivatives: 

 

𝐿𝑥 =
𝑥

√𝑥2 + 𝑦2 + 𝑧2
− 2𝜆, 

𝐿𝑦 =
𝑦

√𝑥2 + 𝑦2 + 𝑧2
− 4𝜆, 

𝐿𝑧 =
𝑧

√𝑥2 + 𝑦2 + 𝑧2
− 5𝜆, 

𝐿𝜆 = −2𝑥 − 4𝑦 − 5𝑧 + 20. 

 

These are then set equal to 0: 

 
𝑥

√𝑥2 + 𝑦2 + 𝑧2
− 2𝜆 = 0, so that       𝜆 =

𝑥

2√𝑥2 + 𝑦2 + 𝑧2
 ,         (𝟏) 

𝑦

√𝑥2 + 𝑦2 + 𝑧2
− 4𝜆 = 0, so that       𝜆 =

𝑦

4√𝑥2 + 𝑦2 + 𝑧2
 ,          (𝟐) 

𝑧

√𝑥2 + 𝑦2 + 𝑧2
− 5𝜆 = 0, so that       𝜆 =

𝑧

5√𝑥2 + 𝑦2 + 𝑧2
 ,          (𝟑) 

−2𝑥 − 4𝑦 − 5𝑧 + 20 = 0,         so that          2𝑥 + 4𝑦 + 5𝑧 = 20.          (𝟒) 

 

Equating (1) and (2), we have 

 
𝑥

2√𝑥2 + 𝑦2 + 𝑧2
=

𝑦

4√𝑥2 + 𝑦2 + 𝑧2
 . 
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Clearing fractions, we have 𝑦 = 2𝑥. Then, equating (1) and (3) and clearing 

fractions, we have 𝑧 =
5

2
𝑥. These are substituted into equation (4): 

 

2𝑥 + 4(2𝑥) + 5 (
5

2
𝑥) = 20. 

 

Simplifying, we have 
45

2
𝑥 = 20, so that 𝑥 =

40

45
=

8

9
 . Since 𝑦 = 2𝑥, we have 

𝑦 = 2 (
8

9
) =

16

9
, and since 𝑧 =

5

2
𝑥, we have 𝑧 =

5

2
(

8

9
) =

40

18
=

20

9
. 

 

The point on the plane 2𝑥 + 4𝑦 + 5𝑧 = 20 closest to the origin is (
8

9
,

16

9
,

20

9
). 

 

 •  •  •  •  

 

Example 32.6: Consider the portion of the plane 2𝑥 + 4𝑦 + 5𝑧 = 20 in the first 

octant. A rectangular box is situated with one corner at the origin and its 

opposite corner on the plane so that the box’s edges lie along (or are parallel to) 

the x-axis, y-axis or z-axis. Find the largest possible volume of such a box, 

keeping the box to within the first octant. (This is the same as Example 30.5) 

 

Solution: The volume of the box is given by 𝑉(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧, and along with 

the constraint     2𝑥 + 4𝑦 + 5𝑧 − 20 = 0, we build function 𝐿: 

 

𝐿(𝑥, 𝑦, 𝑧, 𝜆) = 𝑥𝑦𝑧 − 𝜆(2𝑥 + 4𝑦 + 5𝑧 − 20). 
 

Taking partial derivatives, we have 

 

𝐿𝑥 = 𝑦𝑧 − 2𝜆, 

𝐿𝑦 = 𝑥𝑧 − 4𝜆, 

𝐿𝑧 = 𝑥𝑦 − 5𝜆, 

𝐿𝜆 = −2𝑥 − 4𝑦 − 5𝑧 + 20. 

 

Setting each to 0, we have 

 

𝑦𝑧 − 2𝜆 = 0,     so that     𝜆 =
𝑦𝑧

2
 ,     (𝟏) 

𝑥𝑧 − 4𝜆 = 0,     so that     𝜆 =
𝑥𝑧

4
 ,     (𝟐) 

𝑥𝑦 − 5𝜆 = 0,     so that     𝜆 =
𝑥𝑦

5
 ,     (𝟑) 

−2𝑥 − 4𝑦 − 5𝑧 + 20 = 0,    so that    2𝑥 + 4𝑦 + 5𝑧 = 20.      (𝟒) 
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Equating (1) and (2), we have 

 
𝑦𝑧

2
=

𝑥𝑧

4
,     so that     𝑦 =

1

2
𝑥. 

 

Equating (1) and (3), we have 

 
𝑦𝑧

2
=

𝑥𝑦

5
,     so that     𝑧 =

2

5
𝑥. 

 

These are substituted into (4) and variable x is isolated: 

 

2𝑥 + 4 (
1

2
𝑥) + 5 (

2

5
𝑥) = 20 

2𝑥 + 2𝑥 + 2𝑥 = 20 

6𝑥 = 20 

𝑥 =
10

3
. 

 

Since 𝑦 =
1

2
𝑥, we have 𝑦 =

1

2
(

10

3
) =

5

3
, and since 𝑧 =

2

5
𝑥, we have 𝑧 =

2

5
(

10

3
) =

4

3
. Thus, the dimensions of the largest box will be 

10

3
×

5

3
×

4

3
, with the volume 

(
10

3
) (

5

3
) (

4

3
) =

200

27
 . 

 

 

 


