Jacobians

If we change the variable in an integral, a number or variable expression usually "remains" as part of the new integral. This is called a Jacobian. It can be derived geometrically or analytically.

For example, suppose we have

$$
\int x\left(x^{2}+1\right)^{4} d x
$$

If we change the variable of integration by letting $u=x^{2}+1$ and $d u=2 x d x$, then we have $x d x=$ $\frac{1}{2} d u$, and we make the variable switch:

$$
\begin{aligned}
\int x\left(x^{2}+1\right)^{4} d x & =\int\left(x^{2}+1\right)^{4} x d x \\
& =\int(u)^{4}\left(\frac{1}{2} d u\right) \quad \begin{array}{r}
x^{2}+1=u \\
x d x=\frac{1}{2} d u
\end{array} \\
& =\frac{1}{2} \int u^{4} d u
\end{aligned}
$$

The $\frac{1}{2}$ that remains as part of the new integration is the Jacobian that is a result of the variable switch.

- Polar Coordinates

The typical area element ΔA in polar form looks "sort of" like a rectangle. It is sometimes called a polar rectangle.

Moving away from the origin, we have a small change in r, or Δr. This is the length of one side of the polar rectangle. Sweeping the angle θ slightly, we have $\Delta \theta$. In general, the length of a circular arc with radius r swept out by central angle θ is $r \theta$. Thus, the other side of the polar rectangle has length $r \Delta \theta$.

Therefore, the area is the product, $\Delta A=(r \Delta \theta) \Delta r$, or $r \Delta r \Delta \theta$. Letting the difference tend to zero, we get the standard area differential, $d A=$ $r d r d \theta$.

- Spherical Coordinates

A point in R^{3} can be described by its distance ρ (rho) from the origin, and two angles: the "sweep" angle θ which governs its location relative to the $x y$-plane, and the "equilibrium" angle φ (phi), which governs its location relative to the positive z-axis.

We look at a typical volume element, which is formed by two spherical sectors (changes in ρ) as well as two changes in the angles θ and φ. If the changes are small enough, we can approximate the volume as though it were a rectangular solid, where $V=l w h$.

In the image at right, the measures of two of the three sides of the rectangle are shown. One side is just the change in spherical radius, $\Delta \rho$, while another side uses the formula for the length of an arc of a circle given its radius and central angle (see the Polar Coordinate discussion earlier). Here, the radius is ρ and the angle is $\Delta \varphi$, so that another side is their product, $\rho \Delta \varphi$.

For the third length, we use more geometry. Since φ is the angle of the "radius line" with length ρ and the positive z axis, then by transversals, φ can also be placed into the corner of a right triangle directly adjacent to one corner of the volume element. Therefore, the opposite side of this triangle has length $\rho \sin \varphi$. Now, this length is swept out on the $x y$ plane by angle $\Delta \theta$, so therefore, the small circular arc on the xy-plane has length $\rho \sin \varphi \Delta \theta$. This then is translated up to the actual volume element. Thus, the volume is

$$
\Delta V=(\Delta \rho)(\rho \Delta \varphi)(\rho \sin \varphi \Delta \theta)
$$

As these lengths approach zero, they become the standard Jacobian for a triple integral in spherical coordinates:

$$
d V=\rho^{2} \sin \varphi d \rho d \theta d \varphi
$$

