Jacobians

If we change the variable in an integral, a number or variable expression usually "remains" as part of the new integral. This is called a Jacobian. It can be derived geometrically or analytically.

For example, suppose we have

$$\int x(x^2+1)^4 dx.$$

If we change the variable of integration by letting $u = x^2 + 1$ and du = 2x dx, then we have $x dx = \frac{1}{2} du$, and we make the variable switch:

$$\int x(x^{2}+1)^{4} dx = \int (x^{2}+1)^{4} x dx$$
$$= \int (u)^{4} \left(\frac{1}{2} du\right) \qquad \begin{array}{l} x^{2}+1 = u \\ x dx = \frac{1}{2} du \\ = \frac{1}{2} \int u^{4} du. \end{array}$$

The $\frac{1}{2}$ that remains as part of the new integration is the Jacobian that is a result of the variable switch.

• Polar Coordinates

The typical area element ΔA in polar form looks "sort of" like a rectangle. It is sometimes called a *polar rectangle*.

Moving away from the origin, we have a small change in r, or Δr . This is the length of one side of the polar rectangle. Sweeping the angle θ slightly, we have $\Delta \theta$. In general, the length of a circular arc with radius rswept out by central angle θ is $r\theta$. Thus, the other side of the polar rectangle has length $r\Delta \theta$.

Therefore, the area is the product, $\Delta A = (r\Delta\theta)\Delta r$, or $r\Delta r\Delta\theta$. Letting the difference tend to zero, we get the standard area differential, $dA = r dr d\theta$.

• Spherical Coordinates

A point in R^3 can be described by its distance ρ (rho) from the origin, and two angles: the "sweep" angle θ which governs its location relative to the *xy*-plane, and the "equilibrium" angle φ (phi), which governs its location relative to the positive *z*-axis.

We look at a typical volume element, which is formed by two spherical sectors (changes in ρ) as well as two changes in the angles θ and φ . If the changes are small enough, we can approximate the volume as though it were a rectangular solid, where V = lwh.

In the image at right, the measures of two of the three sides of the rectangle are shown. One side is just the change in spherical radius, $\Delta \rho$, while another side uses the formula for the length of an arc of a circle given its radius and central angle (see the Polar Coordinate discussion earlier). Here, the radius is ρ and the angle is $\Delta \varphi$, so that another side is their product, $\rho \Delta \varphi$.

For the third length, we use more geometry. Since φ is the angle of the "radius line" with length ρ and the positive *z*-axis, then by transversals, φ can also be placed into the corner of a right triangle directly adjacent to one corner of the volume element. Therefore, the opposite side of this triangle has length $\rho \sin \varphi$. Now, this length is swept out on the *xy*-plane by angle $\Delta \theta$, so therefore, the small circular arc on the xy-plane has length $\rho \sin \varphi \Delta \theta$. This then is translated up to the actual volume element. Thus, the volume is

$$\Delta V = (\Delta \rho)(\rho \Delta \varphi)(\rho \sin \varphi \, \Delta \theta).$$

As these lengths approach zero, they become the standard Jacobian for a triple integral in spherical coordinates:

$$dV = \rho^2 \sin \varphi \ d\rho \ d\theta \ d\varphi.$$

Prepared by Scott Surgent (<u>Surgent@asu.edu</u>). Report errors to me. March 22, 2013.

