42. Change of Variables: The Jacobian

It is common to change the variable(s) of integration, the main goal being to rewrite a complicated integrand into a simpler equivalent form. However, in doing so, the underlying geometry of the problem may be altered. This is seen often in single-variable integrals:

Example 42.1: Evaluate

$$
\int_{2}^{4}(3 x+1)^{3} d x
$$

Solution: Let $u=3 x+1$, so that $d u=3 d x$. Then substitutions are made. Note that the expression $d u=3 d x$ is rewritten as $d x=\frac{1}{3} d u$; and that the bounds $2 \leq x \leq 4$ are recalculated using $u=3 x+1$, so that when $x=2$, then $u=3(2)+1=7$, and when $x=4$, then $u=3(4)+1=13$. The bounds with respect to u are now $7 \leq u \leq 13$.

$$
\int_{x=2}^{x=4}(3 x+1)^{3} d x=\int_{u=3(2)+1=7}^{u=3(4)+1=13} u^{3}\left(\frac{1}{3} d u\right)
$$

The integral in terms of u is simplified:

$$
\int_{u=3(2)+1=7}^{u=3(4)+1=13} u^{3}\left(\frac{1}{3} d u\right)=\frac{1}{3} \int_{7}^{13} u^{3} d u .
$$

It is important to note that the two integrals, $\int_{2}^{4}(3 x+1)^{3} d x$ and $\frac{1}{3} \int_{7}^{13} u^{3} d u$, represent the identical problem. The $\frac{1}{3}$ that remains after simplification is called the Jacobian.

The integral in variable x is over an interval of length 2 units, while the integral in u is over an interval of length 6 units. Roughly speaking, variable u covers its interval of integration (length 6) three times "as fast" as that of x (length 2), and since u and x are linearly related, the leading $\frac{1}{3}$ adjusts for the change in the underlying geometry of the intervals.

For double integrals in R^{2}, we assume that a region of integration defined in terms of variables x and y are substituted for new variables u and v through two functions:

$$
\begin{aligned}
u & =f_{1}(x, y) \\
v & =f_{2}(x, y)
\end{aligned}
$$

Note that the pair of equations are written so that u and v are written in terms of x and y. This is called a transformation. Such a "variable change" should be reversible. That is, we should be able to, through algebraic means, isolate x and y in terms of u and v :

$$
\begin{aligned}
& x=g_{1}(u, v) \\
& y=g_{2}(u, v) .
\end{aligned}
$$

The Jacobian is then defined as a determinant of a 2 by 2 matrix:

$$
\mathrm{J}(u, v)=\left|\begin{array}{ll}
\partial g_{1} / \partial u & \partial g_{1} / \partial v \\
\partial g_{2} / \partial u & \partial g_{2} / \partial v
\end{array}\right|, \quad \text { or } \quad \mathrm{J}(u, v)=\left|\begin{array}{ll}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right|
$$

This can be extended into higher dimensions as well.

Example 42.2: Find the Jacobian for the transformation

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Solution: We have

$$
\begin{aligned}
\mathrm{J}(r, \theta) & =\left|\begin{array}{ll}
\partial x / \partial r & \partial x / \partial \theta \\
\partial y / \partial r & \partial y / \partial \theta
\end{array}\right| \\
& =\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right| \\
& =r \cos ^{2} \theta+r \sin ^{2} \theta \\
& =r\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =r .
\end{aligned}
$$

This is the common Jacobian when rectangular coordinates x and y are rewritten in polar coordinates r and θ.

Example 42.3: Evaluate $\iint_{R}(x-2 y) d A$, where R is the parallelogram in the $x y$-plane with vertices $(0,0),(4,1),(6,4)$ and $(2,3)$.

Solution: A sketch of this region shows that it is a Type II region and would require three separate double integrals in either the $d y d x$ or the $d x d y$ ordering of integration. Instead, we observe that the region consists of two pairs of parallel sides, so we find equations for each of these sides:

- From $(0,0)$ to $(4,1)$, we have $y=\frac{1}{4} x$, or $-x+4 y=0$.
- From $(2,3)$ to $(6,4)$, we have $y=\frac{1}{4} x+\frac{5}{2}$, or $-x+4 y=10$.
- From $(0,0)$ to $(2,3)$, we have $y=\frac{3}{2} x$, or $-3 x+2 y=0$.
- From $(4,1)$ to $(6,4)$, we have $y=\frac{3}{2} x-5$, or $-3 x+2 y=-10$.

Thus, we can define a transformation from x and y into new variables u and v as

$$
\begin{array}{llr}
u=-x+4 y & \text { so that } & 0 \leq u \leq 10 \\
v=-3 x+2 y & \text { so that } & -10 \leq v \leq 0 .
\end{array}
$$

The region of integration R transformed into the $u v$-plane is a rectangle, so that u and v have constant bounds.

We now rewrite this transformation so that x and y are isolated. We start with the system

$$
\begin{aligned}
& u=-x+4 y \\
& v=-3 x+2 y .
\end{aligned}
$$

Multiply the bottom row by -2 :

$$
\begin{aligned}
u & =-x+4 y \\
-2 v & =-2(-3 x+2 y) .
\end{aligned}
$$

Simplifying, we have

$$
\begin{aligned}
u & =-x+4 y \\
-2 v & =6 x-4 y .
\end{aligned}
$$

Summing, the y terms sum to 0 and we have

$$
u-2 v=5 x, \quad \text { so that } \quad x=\frac{1}{5} u-\frac{2}{5} v
$$

Substituting this back into the system, we have

$$
y=\frac{3}{10} u-\frac{1}{10} v
$$

We can now find the Jacobian:

$$
\begin{aligned}
\mathrm{J}(u, v) & =\left|\begin{array}{ll}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right| \\
& =\left|\begin{array}{cc}
1 / 5 & -2 / 5 \\
3 / 10 & -1 / 10
\end{array}\right| \\
& =\frac{1}{5}\left(-\frac{1}{10}\right)-\frac{3}{10}\left(-\frac{2}{5}\right) \\
& =-\frac{1}{50}+\frac{6}{50} \\
& =\frac{5}{50}, \quad \text { or } \frac{1}{10} .
\end{aligned}
$$

We revisit the original double integral, and make substitutions:

$$
\begin{aligned}
\iint_{R}(x-2 y) d A & =\int_{-10}^{0} \int_{0}^{10}\left(\left(\frac{1}{5} u-\frac{2}{5} v\right)-2\left(\frac{3}{10} u-\frac{1}{10} v\right)\right)\left(\frac{1}{10}\right) d u d v \\
& =\frac{1}{10} \int_{-10}^{0} \int_{0}^{10}\left(-\frac{2}{5} u-\frac{1}{5} v\right) d u d v
\end{aligned}
$$

The rest of the integration is routine calculation. The inside integral is evaluated first:

$$
\int_{0}^{10}\left(-\frac{2}{5} u-\frac{1}{5} v\right) d u=\left[-\frac{1}{5} u^{2}-\frac{1}{5} u v\right]_{0}^{10}=-20-2 v
$$

This is then integrated with respect to v. The Jacobian, $\frac{1}{10}$, has been moved to the front.

$$
\frac{1}{10} \int_{-10}^{0}(-20-2 v) d v=\frac{1}{10}\left[-20 v-v^{2}\right]_{-10}^{0}=\frac{1}{10}(200-100)=10 .
$$

This was an example of a linear transformation, in which the equations transforming x and y into u and v were linear, as were the equations reversing the transformation. In such a case, the Jacobian will be a constant.

We can also see how the geometry changed: The original region in the $x y$-plane has an area of 10 square units, while the region in the $u v$-plane, a rectangle where $0 \leq u \leq 10$ and $-10 \leq v \leq 0$, has an area of 100 square units. Thus, the region in the $u v$-plane is 10 times as large as the region in the $x y$-plane, so the Jacobian, $\frac{1}{10}$, "balances" this change in underlying area.

The Jacobian is usually taken to be a positive quantity. This is because the naming (and ordering) of the functions transforming x and y into u and v, then in reverse, is arbitrary. Since the Jacobian is a determinant, it is possible that two rows may be swapped depending on the original naming of the functions, which may introduce a factor of -1 into the result, which can be ignored.

