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53. Flux Integrals 
 
Let S be an orientable surface within 𝑅3. In this context, an orientable surface 

is one with two distinct sides. At any point on an orientable surface, there exists 

two normal vectors, one pointing in the opposite direction of the other. Most 

surfaces, especially those defined explicitly by 𝑧 = 𝑓(𝑥, 𝑦), are orientable. An 

example of a non-orientable surface is the Moebius Strip. However, these odd 

surfaces will not play a role in the following discussion. 

 

Let 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑀(𝑥, 𝑦, 𝑧), 𝑁(𝑥, 𝑦, 𝑧), 𝑃(𝑥, 𝑦, 𝑧)〉 be a vector field in 𝑅3. 

Suppose F represents the flow of some medium, e.g. heat or fluid, through 𝑅3. 

The question that arises is: how much flow, as defined by F, passes through the 

surface S in a given unit of time? We make the reasonable assumption that S is 

completely permeable. 

 

At each point on the surface S, there exists two vectors: one being F representing 

the flow, and a unit normal vector n, representing the positive direction. If F and 

n point in the same direction (their angle is acute), then their dot product F  n 

is positive, and at this point we say the flow is positive. Similarly, if F and n 

point in opposite directions, their dot product is negative, and we say that there 

is negative flow at this point. It is possible that F  n is 0, in which case there is 

no flow through the surface at the point. Since F can vary in length, the values 

given by the dot products can vary in size too. 

 

To gain a rough sense of the total net flow, or flux, of a vector field F through 

a surface S, we sum all such dot products F  n. To sum “all” of the dot products 

at every point on the surface means to take an integral. The flux of a vector field 

F through a surface S is given by 

 

∬ 𝐅 ⋅ 𝐧 𝑑𝑆.
𝑅

 

 

Here, R is the region over which the double integral is evaluated. Region R is 

the “shadow” surface S makes on the xy-plane. 

 

A closed surface is one that encloses a finite-volume subregion of 𝑅3 in such a 

way that there is an “inside” and “outside”. Examples of closed surfaces are 

cubes, spheres, ellipsoids, and so on. 

 

Comment: the notions of “positive” and “negative”, and of “up” and “down”, 

vary depending on the context. For a typical surface, “positive” direction of flow 

is usually arbitrarily chosen. For closed surfaces, positive flow is always taken 

to be from the inside to the outside. That is, normal vectors n point “away” from 

the interior of the subregion. 
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Setting up a flux integral requires a number of steps. First, a surface S must be 

given. If the surface is defined explicitly such as 𝑧 = 𝑓(𝑥, 𝑦), then its 

parameterization is 

 

𝐫(𝑥, 𝑦) = 〈𝑥, 𝑦, 𝑓(𝑥, 𝑦)〉. 
 

From this, we can find unit normal vectors n by using the formulas  

 

𝐧 =
〈𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦), −1〉

√𝑓𝑥
2(𝑥, 𝑦) + 𝑓𝑦

2(𝑥, 𝑦) + 1
   or   𝐧 =  

〈−𝑓𝑥(𝑥, 𝑦), −𝑓𝑦(𝑥, 𝑦), 1〉

√𝑓𝑥
2(𝑥, 𝑦) + 𝑓𝑦

2(𝑥, 𝑦) + 1
. 

 

Recall from the discussion of surface area integrals that  

 

𝑑𝑆 = √𝑓𝑥
2(𝑥, 𝑦) + 𝑓𝑦

2(𝑥, 𝑦) + 1 𝑑𝐴. 

 

Thus, substitutions can be made into the flux integral: 

 

∬ 𝐅 ⋅ 𝐧 𝑑𝑆
𝑅

 

= ∬ 〈𝑀, 𝑁, 𝑃〉 ⋅
𝑅

〈𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦), −1〉

√𝑓𝑥
2(𝑥, 𝑦) + 𝑓𝑦

2(𝑥, 𝑦) + 1
 √𝑓𝑥

2(𝑥, 𝑦) + 𝑓𝑦
2(𝑥, 𝑦) + 1 𝑑𝐴. 

 

Note that the ratio of expressions √𝑓𝑥
2(𝑥, 𝑦) + 𝑓𝑦

2(𝑥, 𝑦) + 1 is 1. The flux 

integral is now 

 

∬ 〈𝑀, 𝑁, 𝑃〉 ⋅
𝑅

〈𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦), −1〉 𝑑𝐴,    

or  ∬ 〈𝑀, 𝑁, 𝑃〉 ⋅
𝑅

〈−𝑓𝑥(𝑥, 𝑦), −𝑓𝑦(𝑥, 𝑦), 1〉 𝑑𝐴. 

 

After taking the dot product, the integrand is a function in variables x and y, and 

normal techniques are used to evaluate the double integrals. 

 

In the examples that follow, we abuse the notation slightly: the vector n may not 

be a unit vector. As long as the normal vector is derived carefully and has the 

appearance shown above, it will be sufficient. 
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Example 53.1: Find the flux of the vector field 𝐅(𝑥, 𝑦, 𝑧) = 〈1,2,3〉 through the 

square S in the xy-plane with vertices (0,0), (1,0), (0,1) and (1,1), where positive 

flow is the positive z direction. (Since the surface S lies in the xy-plane, it is 

identical to R in this case). 

 

Solution: Since positive flow is in the direction of positive z, and the surface S 

is on the xy-plane itself, then a unit normal to R is 𝐧 = 〈0,0,1〉. Thus, 𝐅 ⋅ 𝐧 =
〈1,2,3〉 ⋅ 〈0,0,1〉 = 3, and the flux is given by 

 

∬ 3 𝑑𝐴
𝑅(=𝑆)

= 3 ∬ 𝑑𝐴
𝑅

= 3(Area of 𝑅) = 3(1) = 3. 

 

In any unit of time, a total flow of 3 units of mass per unit of time will flow 

through S. In this example, the answer could be reasoned without performing 

the actual integration. Note that from each vector 〈1,2,3〉, only the z-component 

3 is relevant. That is, in the positive z direction, the fluid flows at a rate of 3 

units of mass per unit of time.  

 

 
 

At each point in the square S, a vector 〈1,2,3〉 is drawn, so it stands to reason 

that the flux can be viewed as the volume of a box with the square S as its base, 

and a height of 3; thus, the volume = (1)(1)(3) = 3, the flux. If the flow was of 

water, this box holds the water that flowed through the square S in one unit of 

time in the direction of positive z. 

 

The other components in F indicate that the flow travels in a direction that is not 

orthogonal to S. But the fact does remain that regardless how far the fluid may 

travel in the x or y directions, after 1 unit of time, 3 units of mass will have 

flowed in the z-direction, and that is exactly what we are seeking to determine. 

 

This geometrical phenomenon is known as Cavalieri’s Principle. You may have 

“seen” this principle when stacking coins. A perfectly vertical stack will appear 

as a cylinder and its volume can be easily determined. If the stack is disturbed 

so that it leans but does not fall over, the vertical height has not changed, nor 
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has the volume. The x or y offset in the lean has no effect on the volume of the 

stack. 

 

         

 

Example 53.2: Find the flux of the vector field 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑥, 𝑦, −𝑧〉 through 

the portion of the plane in the first octant with intercepts (4,0,0), (0,8,0) and 

(0,0,10), where positive flow is defined to be in the positive z direction. 

 

Solution: First, we find an equation for the plane (this is surface S). Recall from 

Example 13.6 that a plane passing through (a,0,0), (0,b,0) and (0,0,c) has the 

general form 

 
𝑥

𝑎
+

𝑦

𝑏
+

𝑧

𝑐
= 1. 

 

Thus, the plane here is 

 
𝑥

4
+

𝑦

8
+

𝑧

10
= 1. 

 

Clearing fractions, we have 10𝑥 + 5𝑦 + 4𝑧 = 40, or 𝑧 = 10 −
5

2
𝑥 −

5

4
𝑦.  

 

From the plane, There are two normal vectors n: ⟨−
5

2
, −

5

4
, −1⟩ or ⟨

5

2
,

5

4
, 1⟩. We 

choose 𝐧 = ⟨
5

2
,

5

4
, 1⟩ since the problem defined positive flow to be in the positive 

z direction. 

 

We now find 𝐅 ⋅ 𝐧. Note that since 𝑧 = 10 −
5

2
𝑥 −

5

4
𝑦, we write F in terms of x 

and y, where 𝐅(𝑥, 𝑦) = 〈𝑥, 𝑦, −𝑧〉 = ⟨𝑥, 𝑦, − (10 −
5

2
𝑥 −

5

4
𝑦)⟩. Thus, 

 

𝐅 ⋅ 𝐧 = ⟨𝑥, 𝑦, −10 +
5

2
𝑥 +

5

4
𝑦⟩ ⋅ ⟨

5

2
,
5

4
, 1⟩ 

=
5

2
𝑥 +

5

4
𝑦 − 10 +

5

2
𝑥 +

5

4
𝑦 

= 5𝑥 +
5

2
𝑦 − 10. 

 

This will be the integrand.  
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The bounds of integration lie in the xy-plane, the “footprint” of the surface S, 

10𝑥 + 5𝑦 + 4𝑧 = 40 as it is projected onto the xy-plane (this being R): 

 

 
 

Choosing dy dx as the order of integration, the bounds on y are 0 ≤ 𝑦 ≤ 8 − 2𝑥, 

and the bounds on x are 0 ≤ 𝑥 ≤ 4. The flux of F through the surface S is  

 

∫ ∫ (5𝑥 +
5

2
𝑦 − 10)  𝑑𝑦

8−2𝑥

0

 𝑑𝑥
4

0

. 

 

Evaluating the inside integral, we have  

 

∫ (5𝑥 +
5

2
𝑦 − 10)  𝑑𝑦

8−2𝑥

0

= [5𝑥𝑦 +
5

4
𝑦2 − 10𝑦]

0

8−2𝑥

 

= 5𝑥(8 − 2𝑥) +
5

4
(8 − 2𝑥)2 − 10(8 − 2𝑥) 

= 20𝑥 − 5𝑥2.        (After simplification) 

 

This is integrated with respect to x: 

 

∫ (20𝑥 − 5𝑥2) 𝑑𝑥
4

0

= [10𝑥2 −
5

3
𝑥3]

0

4

= 10(4)2 −
5

3
(4)3 =

160

3
 . 

 

The flux is positive, and we can say that in one unit of time, 
160

3
 units of material 

flow through this surface. 

 

         

 

It seems plausible that it should not matter in which direction we define to be 

positive flow. In the next example, we repeat this same problem but in a different 

“positive” direction. 
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Example 53.3: Find the flux of the vector field 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑥, 𝑦, −𝑧〉 through 

the portion of the plane in the first octant with intercepts (4,0,0), (0,8,0) and 

(0,0,10), where positive flow is defined to be in the positive y direction. 

 

Solution: From the equation of the plane 10𝑥 + 5𝑦 + 4𝑧 = 40, solve for y, 

obtaining 𝑦 = 8 − 2𝑥 −
4

5
𝑧, and from this, two normal vectors are identified, 

⟨−2, −1, −
4

5
⟩ or ⟨2, 1,

4

5
 ⟩. Since the direction is positive y, choose 𝐧 = ⟨2, 1,

4

5
 ⟩. 

 

The vector field F is adjusted too. In place of y, we substitute 8 − 2𝑥 −
4

5
𝑧: 

 

𝐅(𝑥, 𝑧) = 〈𝑥, 𝑦, −𝑧〉 = ⟨𝑥, 8 − 2𝑥 −
4

5
𝑧, −𝑧⟩. 

 

The dot product 𝐅 ⋅ 𝐧 is now determined: 

 

𝐅 ⋅ 𝐧 = ⟨𝑥, 8 − 2𝑥 −
4

5
𝑧, −𝑧⟩ ⋅ ⟨2, 1,

4

5
 ⟩ 

= 2𝑥 + 8 − 2𝑥 −
4

5
𝑧 −

4

5
𝑧 

= 8 −
8

5
𝑧. 

 

For the bounds of integration, we look at the footprint of the surface S projected 

onto the xz plane: 

 

 
 

Choosing the dz dx order of integration, the bounds are 0 ≤ 𝑧 ≤ 10 −
5

2
𝑥 and 

0 ≤ 𝑥 ≤ 4. The flux is given by the double integral 

 

∫ ∫ (8 −
8

5
𝑧)  𝑑𝑧

10−(5 2⁄ )𝑥

0

 𝑑𝑥
4

0

. 
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The inside integral is evaluated: 

 

∫ (8 −
8

5
𝑧)  𝑑𝑧

10−(5 2⁄ )𝑥

0

= [8𝑧 −
4

5
𝑧2]

0

10−(5 2⁄ )𝑥

 

= 8 (10 −
5

2
𝑥) −

4

5
(10 −

5

2
𝑥)

2

 

= 20𝑥 − 5𝑥2.      (after simplification) 

 

The outside integral is evaluated: 

 

∫ (20𝑥 − 5𝑥2) 𝑑𝑥
4

0

= [10𝑥2 −
5

3
𝑥3]

0

4

= 10(4)2 −
5

3
(4)3 =

160

3
 . 

 

And we arrive at the same result. This should not be surprising. If you are feeling 

energetic, repeat the problem where the positive direction of flow is the positive 

x direction. 

 

         

 

Example 53.4: Find the flux of the vector field 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑧, 2𝑥, 𝑦〉 through 

the portion of the paraboloid 𝑧 = 9 − 𝑥2 − 𝑦2 above the xy-plane and confined 

to the first octant, where positive flow is in the positive z-direction. 

 

Solution: Following the forms 〈𝑓𝑥, 𝑓𝑦 , −1〉 or 〈−𝑓𝑥, −𝑓𝑦, 1〉, the normal vectors 

to the surface are 

 
〈−2𝑥, −2𝑦, −1〉    or    〈2𝑥, 2𝑦, 1〉. 

 

We use 𝐧 = 〈2𝑥, 2𝑦, 1〉 since it agrees with the positive z direction. Next, vector 

field F is written in terms of x and y only: 

 

𝐅(𝑥, 𝑦) = 〈9 − 𝑥2 − 𝑦2, 2𝑥, 𝑦〉. 
 

Thus, the dot product 𝐅 ⋅ 𝐧 is: 

 

𝐅 ⋅ 𝐧 = (9 − 𝑥2 − 𝑦2)(2𝑥) + (2𝑥)(2𝑦) + (𝑦)(1)
= (9 − 𝑥2 − 𝑦2)2𝑥 + 4𝑥𝑦 + 𝑦. 

 

The region of integration R is a filled-in quarter-circle on the xy-plane with 

radius 3, with its center at the origin. We use polar coordinates. Using the 

substitutions 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃, the bounds of integration become  

0 ≤ 𝑟 ≤ 3 and 0 ≤ 𝜃 ≤
𝜋

2
. Recall also that the area element 𝑑𝐴 = 𝑟 𝑑𝑟 𝑑𝜃. 
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The expression (9 − 𝑥2 − 𝑦2)2𝑥 + 4𝑥𝑦 + 𝑦 is also written in terms of 𝑟 and 𝜃: 

 

(9 − (𝑟 cos 𝜃)2 − (𝑟 sin 𝜃)2)2(𝑟 cos 𝜃) + 4(𝑟 cos 𝜃)(𝑟 sin 𝜃) + (𝑟 sin 𝜃). 
 

Note that (9 − (𝑟 cos 𝜃)2 − (𝑟 sin 𝜃)2) = 9 − 𝑟2. Thus, we have 

 

(9 − 𝑟2)2(𝑟 cos 𝜃) + 4(𝑟 cos 𝜃)(𝑟 sin 𝜃) + (𝑟 sin 𝜃). 
 

This is further simplified: 

 

18𝑟 cos 𝜃 − 2𝑟3 cos 𝜃 + 4𝑟2 cos 𝜃 sin 𝜃 + 𝑟 sin 𝜃. 
 

Finally, the flux integral is 

 

∫ ∫ (18𝑟 cos 𝜃 − 2𝑟3 cos 𝜃 + 4𝑟2 cos 𝜃 sin 𝜃 + 𝑟 sin 𝜃) 𝑟 𝑑𝑟
3

0

𝑑𝜃
𝜋 2⁄

0

. 

 

Distribute the 𝑟: 

 

∫ ∫ (18𝑟2 cos 𝜃 − 2𝑟4 cos 𝜃 + 4𝑟3 cos 𝜃 sin 𝜃 + 𝑟2 sin 𝜃) 𝑑𝑟
3

0

𝑑𝜃
𝜋 2⁄

0

. 

 

The inside integral is evaluated: 

 

∫ (18𝑟2 cos 𝜃 − 2𝑟4 cos 𝜃 + 4𝑟3 cos 𝜃 sin 𝜃 + 𝑟2 sin 𝜃) 𝑑𝑟
3

0

 

= [6𝑟3 cos 𝜃 −
2

5
𝑟5 cos 𝜃 + 𝑟4 cos 𝜃 sin 𝜃 +

1

3
𝑟3 sin 𝜃]

0

3

 

= 162 cos 𝜃 −
486

5
cos 𝜃 + 81 cos 𝜃 sin 𝜃 + 9 sin 𝜃 

=
324

5
cos 𝜃 + 81 cos 𝜃 sin 𝜃 + 9 sin 𝜃 .       {162 −

486

5
=

324

5
 

 

This is integrated with respect to 𝜃: 

 

∫ (
324

5
cos 𝜃 + 81 cos 𝜃 sin 𝜃 + 9 sin 𝜃)  𝑑𝜃

𝜋 2⁄

0

= [
324

5
sin 𝜃 +

81

2
sin2 𝜃 − 9 cos 𝜃]

0

𝜋 2⁄
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Note that sin (
𝜋

2
) = 1, sin(0) = 0, cos (

𝜋

2
) = 0 and cos(0) = 1: 

 

[
324

5
sin 𝜃 +

81

2
sin2 𝜃 − 9 cos 𝜃]

0

𝜋 2⁄

 

= (
324

5
(1) +

81

2
(1) − 9(0)) − (

324

5
(0) +

81

2
(0) − 9(1)) 

=
1143

10
 . 

 

There is a lot of positive flow through this surface, as indicated by the result. As 

much work as this seemed to be, it took advantage of many of the nicer aspects 

of polar integration.  

 

         

 

The following three examples discuss flux through a closed surface. Thus, we 

must choose n to point away from the interior of the closed surface. 

 

Example 53.5: Find the net flux of the vector field 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑥, 𝑦, 1〉 through 

the closed surface of the hemisphere 𝑥2 + 𝑦2 + 𝑧2 = 4 above the xy-plane, 

whose base is on the xy-plane. 

 

Solution: For the hemisphere, the normal vectors will point in the direction of 

positive z, away from the interior. Isolate z in the equation 𝑥2 + 𝑦2 + 𝑧2 = 4: 

 

𝑧 = 𝑓(𝑥, 𝑦) = √4 − 𝑥2 − 𝑦2. 
 

Using the form 𝐧 = 〈−𝑓𝑥, −𝑓𝑦, 1〉, we have 

 

𝐧 = ⟨
𝑥

√4 − 𝑥2 − 𝑦2
,

𝑦

√4 − 𝑥2 − 𝑦2
, 1⟩. 

 

There is no z-variable in F, so there is no need to make any substitutions. Vector 

field F is already in terms of x and y. The dot product 𝐅 ⋅ 𝐧 is 

 

𝐅 ⋅ 𝐧 = 〈𝑥, 𝑦, 1〉 ⋅ ⟨
𝑥

√4 − 𝑥2 − 𝑦2
,

𝑦

√4 − 𝑥2 − 𝑦2
, 1⟩ 

=
𝑥2

√4 − 𝑥2 − 𝑦2
+

𝑦2

√4 − 𝑥2 − 𝑦2
+ 1 

=
𝑥2 + 𝑦2

√4 − 𝑥2 − 𝑦2
+ 1. 
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This is the integrand of the flux integral. We will use polar coordinates to 

evaluate. The region of integration in the xy-plane is a circle of radius 2, centered 

at the origin. Using 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃, with bounds 0 ≤ 𝑟 ≤ 2 and 

0 ≤ 𝜃 ≤ 2𝜋, the integrand becomes 

 

𝑟2

√4 − 𝑟2
+ 1, 

 

and the flux through the hemisphere is 

 

∫ ∫ (
𝑟2

√4 − 𝑟2
+ 1)

2

0

 𝑟 𝑑𝑟
2𝜋

0

𝑑𝜃. 

 

The inside integral is evaluated. A table of integrals is used to determine the 

antiderivative: 

 

∫ (
𝑟2

√4 − 𝑟2
+ 1)

2

0

 𝑟 𝑑𝑟 = ∫ (
𝑟3

√4 − 𝑟2
+ 𝑟)

2

0

𝑑𝑟 

= [−
1

3
(𝑟2 + 8)√4 − 𝑟2 +

1

2
𝑟2]

0

2

 

= 2 − (−
1

3
(8)(2)) =

22

3
. 

 

Then the outside integral is evaluated: 

 

∫ (
22

3
)

2𝜋

0

𝑑𝜃 =
22

3
∫ 𝑑𝜃

2𝜋

0

=
22

3
(2𝜋) =

44𝜋

3
. 

 

Now, we evaluate the flux through the base itself, the circle of radius 2 centered 

at the origin. Since this surface lies in the xy-plane, we will use 𝐧 = 〈0,0, −1〉 
because the positive orientation of flow is away from the interior (note that 
〈0,0,1〉 would point inside the object). The dot product 𝐅 ⋅ 𝐧 is 

 

𝐅 ⋅ 𝐧 = 〈𝑥, 𝑦, 1〉 ⋅ 〈0,0, −1〉 = −1. 
 

Thus, the flux through the circle of radius 2 is 

 

∬ (−1) 𝑑𝐴
𝑅

= − ∬ 𝑑𝐴
𝑅

= −4𝜋. 

 

Note that ∬ 𝑑𝐴
𝑅

 represents the area of the circle of radius 2, which is 4𝜋. 

Adding the two flux values for the two surfaces that compose the closed surface, 

the total net flux through this hemisphere and its base is 
44𝜋

3
+ (−4𝜋) =

32𝜋

3
.  
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Example 53.6: Find the net flux of 𝐅(𝑥, 𝑦, 𝑧) = 〈2𝑥, 𝑦, 4𝑧〉 through a cube in 

the first octant with vertices (0,0,0), (1,0,0), (1,1,0), (0,1,0), (0,0,1), (1,0,1), 

(1,1,1) and (0,1,1). 

 

Solution: To find the net flux, we need to find the flux through each of the box’s 

six surfaces, then sum these values. The box is enclosed by the planes x = 0, y = 

0, z = 0, x = 1, y = 1 and z = 1. 

 

 
The six normal vectors n for each of the six surfaces of the box. 

Note that each n points away from the interior of the cube. 

 

For the surface z = 0, the normal vector points in the direction of negative z, so 

𝐧 = 〈0,0, −1〉. The equation z = 0 is substituted into F, so that 𝐅(𝑥, 𝑦, 0) =
〈2𝑥, 𝑦, 0〉. Therefore, 𝐅 ⋅ 𝐧 = 〈2𝑥, 𝑦, 0〉 ⋅ 〈0,0, −1〉 = 0. The flux is zero—there 

is no flow generated by the vector field F through the surface z = 0. 
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For the surface x = 0, the normal vector points in the direction of negative x, so 

𝐧 = 〈−1,0,0〉. The equation x = 0 is substituted into F, so that 𝐅(0, 𝑦, 𝑧) =
〈0, 𝑦, 4𝑧〉. Therefore, 𝐅 ⋅ 𝐧 = 〈0, 𝑦, 4𝑧〉 ⋅ 〈−1,0,0〉 = 0. The flux is zero—there 

is no flow generated by the vector field F through the surface x = 0. 

 

For the surface z = 1, the normal vector points in the direction of positive z, so 

𝐧 = 〈0,0,1〉. The equation z = 1 is substituted into F, so that 𝐅(𝑥, 𝑦, 1) =
〈2𝑥, 𝑦, 4(1)〉. Therefore, 𝐅 ⋅ 𝐧 = 〈2𝑥, 𝑦, 4〉 ⋅ 〈0,0,1〉 = 4. The flux through z = 1 

is ∬ 4 𝑑𝐴
𝑅

= 4 ∬ 𝑑𝐴
𝑅

= 4(1) = 4, where ∬ 𝑑𝐴
𝑅

 is the area of the surface, 

which is a square with side lengths 1. 

 

For the surface x = 1, the normal vector points in the direction of positive x, so 

𝐧 = 〈1,0,0〉. The equation x = 1 is substituted into F, so that 𝐅(1, 𝑦, 𝑧) =
〈2(1), 𝑦, 4𝑧〉. Therefore, 𝐅 ⋅ 𝐧 = 〈2, 𝑦, 4𝑧〉 ⋅ 〈1,0,0〉 = 2. The flux through x = 1 

is given by ∬ 2 𝑑𝐴
𝑅

= 2 ∬ 𝑑𝐴
𝑅

= 2(1) = 2. 

 

For the surface y = 0, the normal vector points in the direction of negative y, so 

𝐧 = 〈0, −1,0〉. The equation y = 0 is substituted into F, so that 𝐅(𝑥, 0, 𝑧) =
〈2𝑥, 0,4𝑧〉. Therefore, 𝐅 ⋅ 𝐧 = 〈2𝑥, 0,4𝑧〉 ⋅ 〈0, −1,0〉 = 0. The flux is zero—

there is no flow generated by the vector field F through the surface y = 0. 

 

For the surface y = 1, the normal vector points in the direction of positive y, so 

𝐧 = 〈0,1,0〉. The equation y = 1 is substituted into F, so that 𝐅(𝑥, 1, 𝑧) =
〈2𝑥, 1,4𝑧〉. Therefore, 𝐅 ⋅ 𝐧 = 〈2𝑥, 1,4𝑧〉 ⋅ 〈0,1,0〉 = 1. The flux through y = 1 

is given by ∬ 1 𝑑𝐴
𝑅

= 1 ∬ 𝑑𝐴
𝑅

= 1. 

 

Thus, the total net flux is the sum of these values: 0 + 0 + 0 + 4 + 2 + 1 = 7 units 

of mass per unit of time. 

 

         

 

 

 
 

 

 

See an error? Have a suggestion? 

Please see www.surgent.net/vcbook  

 

 

 

 

 

 

http://www.surgent.net/vcbook
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Example 53.7: Find the net flux of 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑥𝑦, −𝑦, 𝑧〉 through the closed 

surface composed of the cylinder 𝑥2 + 𝑦2 = 4 and the planes, 𝑦 = 0, 𝑧 = 1 and 

𝑧 = 6. 

 

Solution: The object is shown below: 

 

 
 

The flux through the planes can be found quickly. 

 

For z = 1, we use 𝐧 = 〈0,0, −1〉 since the direction of positive flow will be away 

from the interior bounded by the surface. Also, since z = 1, we have 𝐅(𝑥, 𝑦, 1) =
〈𝑥𝑦, −𝑦, 1〉. Thus, we have 𝐅 ⋅ 𝐧 = 〈𝑥𝑦, −𝑦, 1〉 ⋅ 〈0,0, −1〉 = −1. The region of 

integration R is a half-circle in the xy-plane of radius 2, its center at the origin 

(in gray, above). The flux through this plane is 

 

∬ (−1) 𝑑𝐴
𝑅

= − ∬ 𝑑𝐴
𝑅

= − (
Area inside half of a

circle of radius 2
) = −

1

2
𝜋(2)2 = −2𝜋. 

 

For z = 6, we use 𝐧 = 〈0,0,1〉, which points upward, away from the interior 

bounded by the surface. Also, since z = 6, we have 𝐅(𝑥, 𝑦, 6) = 〈𝑥𝑦, −𝑦, 6〉. 

Thus, we have 𝐅 ⋅ 𝐧 = 〈𝑥𝑦, −𝑦, 6〉 ⋅ 〈0,0,1〉 = 6. The region of integration R is 

the same as above. The flux through this plane is 

 

∬ (6) 𝑑𝐴
𝑅

= 6 ∬ 𝑑𝐴
𝑅

= 6 (
1

2
𝜋(2)2) = 12𝜋. 

 

For y = 0, we use 𝐧 = 〈0, −1,0〉, keeping in mind we want the normal vector to 

point outward from the interior bounded by the surface. We have 𝐅(𝑥, 0, 𝑧) =
〈0,0, 𝑧〉, so that 𝐅 ⋅ 𝐧 = 0. Thus, the flux through this plane is 0. 
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For the cylinder 𝑥2 + 𝑦2 = 4, we parameterize it in cylindrical coordinates 

using two variables: 

 

𝐫(𝑢, 𝑣) = 〈2 cos 𝑢 , 2 sin 𝑢 , 𝑣〉,       where      0 ≤ 𝑢 ≤ 𝜋      and       1 ≤ 𝑣 ≤ 6. 
 

To find a normal vector n to this surface, find 𝐫𝑢 and 𝐫𝑣 and then find 𝐫𝑢 × 𝐫𝑣: 

 

𝐫𝑢 = 〈−2 sin 𝑢 , 2 cos 𝑢 , 0〉   and   𝐫𝑣 = 〈0,0,1〉;   
 

thus,   𝐧 = 𝐫𝑢 × 𝐫𝑣 = 〈2 cos 𝑢 , 2 sin 𝑢 , 0〉. 
 

Vector field F is rewritten in terms of u and v, where 𝑥 = 2 cos 𝑢 and 𝑦 =
2 sin 𝑢: 

 

𝐅(𝑢, 𝑣) = 〈(2 cos 𝑢)(2 sin 𝑢), −(2 sin 𝑢), 𝑣〉 = 〈4 cos 𝑢 sin 𝑢 , −2 sin 𝑢 , 𝑣〉. 
 

The dot product is  

 

𝐅 ⋅ 𝐧 = 〈4 cos 𝑢 sin 𝑢 , −2 sin 𝑢 , 𝑣〉 ⋅ 〈2 cos 𝑢 , 2 sin 𝑢 , 0〉 

= 8 cos2 𝑢 sin 𝑢 − 4 sin2 𝑢. 
 

The flux through the cylinder alone is 

 

∫ ∫ (8 cos2 𝑢 sin 𝑢 − 4 sin2 𝑢) 𝑑𝑢
𝜋

0

𝑑𝑣
6

1

. 

 

We use the identity sin2 𝑢 =
1

2
−

1

2
cos(2𝑢), then simplify: 

 

∫ ∫ (8 cos2 𝑢 sin 𝑢 − 4 (
1

2
−

1

2
cos(2𝑢)))  𝑑𝑢

𝜋

0

𝑑𝑣
6

1

= ∫ ∫ (8 cos2 𝑢 sin 𝑢 − 2 + 2 cos(2𝑢)) 𝑑𝑢
2𝜋

0

𝑑𝑣
6

1

. 

 

The inside integral is evaluated: 

 

∫ (8 cos2 𝑢 sin 𝑢 − 2 + 2 cos(2𝑢)) 𝑑𝑢
𝜋

0

= [−
8

3
cos3 𝑢 − 2𝑢 + sin(2𝑢)]

0

2𝜋

 

=
16

3
− 2𝜋. 

 

The outside integral is evaluated: 

 

∫ (
16

3
− 2𝜋)  𝑑𝑣

6

1

= (
16

3
− 2𝜋) ∫ 𝑑𝑣

6

1

= (
16

3
− 2𝜋) (5) =

80

3
− 10𝜋. 
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The net flux through the closed surface is −2𝜋 + 12𝜋 +
80

3
− 10𝜋 =

80

3
. 

 

         

 

Determining the flux through a closed surfaces can be tedious since we usually 

must determine the flux through all surfaces of the object. However, there is a 

faster way to find the flux through such surfaces, using the divergence operator. 

This is called the divergence theorem. 

 

54. The Divergence Theorem 
 
Let S be a closed surface that encloses a subregion in 𝑅3 in such a way that the 

surface creates a distinct inside and outside. Let 𝐅(𝑥, 𝑦, 𝑧) be a vector field in 

𝑅3. To find the total flow of mass through S, we can use the divergence 

theorem: 

 

∬ 𝐅 ⋅ 𝐧 𝑑𝑆
𝑅

= ∭ div 𝐅 𝑑𝑉
𝑆

. 

 

We are slightly abusing the notation here. The subscript S in the triple integral 

is the surface, but the integral itself is evaluated over the region enclosed by the 

surface. 

 

         

 

Example 54.1: Find the net flux of the vector field 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑥, 𝑦, 1〉 through 

the closed surface of the hemisphere 𝑥2 + 𝑦2 + 𝑧2 = 4 above the xy-plane, 

whose base is on the xy-plane. (This is a repeat of Example 53.5) 

 

Solution: We use the divergence theorem. The divergence of F is 

 

div 𝐅 = ∇ ⋅ 𝐅 = 〈𝜕𝑥 , 𝜕𝑦 , 𝜕𝑧〉 ⋅ 〈𝑥, 𝑦, 1〉 

= 1 + 1 + 0 

= 2. 
 

The flux is then given by  

 

∭ div 𝐅 𝑑𝑉
𝑆

= ∭ 2 𝑑𝑉
𝑆

 

= 2 ∭ 𝑑𝑉
𝑆

 

= 2 (
volume inside a hemisphere

with radius 2
 ) 
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= 2 (
1

2
(

4

3
𝜋(2)3)) =

32𝜋

3
 . 

Here, ∭ 𝑑𝑉
𝑆

 is the volume of the subregion in 𝑅3 enclosed by S.  

 

         

 

If div F is a constant, then geometry may be used to determine ∭ 𝑑𝑉
𝑆

. 

 

Example 54.2: Find the net flux of 𝐅(𝑥, 𝑦, 𝑧) = 〈2𝑥, 𝑦, 4𝑧〉 through a cube in 

the first octant with vertices (0,0,0), (1,0,0), (1,1,0), (0,1,0), (0,0,1), (1,0,1), 

(1,1,1) and (0,1,1).       (This is a repeat of Example 53.6) 

 

Solution: Find the divergence of F: 

 

div 𝐅 = ∇ ⋅ 𝐅 = 〈𝜕𝑥 , 𝜕𝑦 , 𝜕𝑧〉 ⋅ 〈2𝑥, 𝑦, 4𝑧〉 

= 2 + 1 + 4 

= 7. 
 

Thus, the flux through the solid cube with side lengths 1 is 

 

∭ div 𝐅 𝑑𝑉
𝑆

= ∭ 7 𝑑𝑉
𝑆

 

= 7 ∭ 𝑑𝑉
𝑆

 

= 7(1)3 

= 7. 

         

 

Example 54.3: Find the net flux of 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑥𝑦, −𝑦, 𝑧〉 through the closed 

surface composed of the cylinder 𝑥2 + 𝑦2 = 4 and the planes, 𝑦 = 0, 𝑧 = 1 and 

𝑧 = 6.     (This is a repeat of Example 53.7) 

 

Solution: The divergence of F is ∇ ⋅ 𝐅 = 𝑦, and by the divergence theorem, the 

net flux through this closed surface is (using polar coordinates with 𝑦 = 𝑟 sin 𝜃): 

 

∭ 𝑦 𝑑𝑉
𝑆

= ∫ ∫ ∫ (𝑟 sin 𝜃)
2

0

𝜋

0

6

1

 𝑟 𝑑𝑟 𝑑𝜃 𝑑𝑧 = ∫ ∫ ∫ 𝑟2 sin 𝜃
2

0

𝜋

0

6

1

 𝑑𝑟 𝑑𝜃 𝑑𝑧. 

 

Since the bounds are constants and the integrand is held by multiplication, we 

evaluate this triple integral as a product of three single-variable integrals: 
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(∫ 𝑑𝑧
6

1

) (∫ sin 𝜃  𝑑𝜃
𝜋

0

) (∫ 𝑟2 𝑑𝑟
2

0

) = (5)(2) (
8

3
) =

80

3
 . 

 

         

 

Note the efficiency of the divergence theorem on closed surfaces by comparing 

the previous three examples with the earlier examples. 

 

Example 54.4: Let 𝐅(𝑥, 𝑦, 𝑧) = 〈5𝑥 + 𝑒𝑦, sin(𝑥2) + 2𝑦, tan−1(𝑥𝑦) − 𝑧〉. Find 

the flux of F through the closed surface that is a right circular cone, including 

its base, with base radius of 3 on the yz-plane, and apex at (4,0,0). 

 

Solution: The divergence of F is ∇ ⋅ 𝐅 = 5 + 2 – 1 = 6 (you verify). The flux is 

given by  

 

∭ 6 𝑑𝑉
𝑆

= 6(volume inside the cone). 

 

The volume of a right circular cone is 
1

3
𝜋𝑟2ℎ. Here, 𝑟 = 3 and ℎ = 4 since the 

apex is 4 units from the yz-plane. Thus, the flux is 6 (
1

3
𝜋(3)2(4)) = 72𝜋. 

 

         

 

Example 54.5: Find the net flux of 𝐅(𝑥, 𝑦, 𝑧) = 〈3,5,9〉 through a sphere of 

radius 1, centered at the origin. 

 

Solution: The divergence of F is ∇ ⋅ 𝐅 = 0 + 0 + 0 = 0. Therefore, there is zero 

net flux through the sphere, or any other closed surface for that matter. 

 

This does not mean that there is zero flux on all faces or sides of the closed 

surface. It means that equal amounts of matter are entering and leaving through 

the closed surface per unit time. For example, a four-sided object may have flux 

figures of 3, 5, 2 and –10 among its four sides. Its net flux is 0. 

 

All constant vector fields F have div F = 0. Constant vector fields are 

incompressible. However, not all incompressible vector fields (those with div F 

= 0) are constant vector fields. Consider the case when 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑧, 𝑥, 𝑦〉. 
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Example 54.6: Find the flux of 𝐅(𝑥, 𝑦, 𝑧) = ⟨
1

3
𝑥3,

1

3
𝑦3, 2⟩ through the portion 

of the surface (paraboloid) 𝑧 = 1 − 𝑥2 − 𝑦2 that lies above the xy-plane, where 

positive flow is the direction of positive z. 

 

Solution: Note that the problem asks only for the flux through this specific 

surface, which is not a closed surface. To use the divergence theorem, we need 

a closed surface. So we “close off” this surface by including its base, a circle of 

radius 1 on the xy-plane. We can then determine the net flux through this closed 

surface using the divergence theorem. We also determine the flux through the 

base. The difference will be the flux through the paraboloid. 

 

The flux through the base is found first. Because this surface is now part of a 

closed surface, its direction of positive flow will be “away” from the inside of 

the closed surface—in this case, in the direction of negative z. So we use 𝐧 =
〈0,0, −1〉. Meanwhile, the xy-plane means that z = 0, so that 𝐅(𝑥, 𝑦, 0) =

⟨
1

3
𝑥3,

1

3
𝑦3, 2⟩. The dot product is 

 

𝐅 ⋅ 𝐧 = ⟨
1

3
𝑥3,

1

3
𝑦3, 2⟩ ⋅ 〈0,0, −1〉 = −2.  

 

The flux through the circle of radius 1 on the xy-plane is  

 

∬ (−2) 𝑑𝐴
𝑅

= −2 ∬ 𝑑𝐴
𝑅

= −2 (
area inside a circle

of radius 1
) = −2𝜋. 

 

Now, the divergence theorem is used on the entire closed surface—the 

paraboloid along with its base. We have div F = 𝑥2 + 𝑦2, and since we will 

integrate with respect to x and y, where the region of integration is a circle of 

radius 1, we use polar coordinates and common trigonometric identities: 

 

∫ ∫ ((𝑟 cos 𝜃)2 + (𝑟 sin 𝜃)2)  𝑟 𝑑𝑟 𝑑𝜃
1

0

2𝜋

0

= ∫ ∫ 𝑟2 𝑟 𝑑𝑟 𝑑𝜃
1

0

2𝜋

0

= ∫ ∫ 𝑟3 𝑑𝑟 𝑑𝜃
1

0

2𝜋

0

. 

 

The inside integral is  

 

∫ 𝑟3 𝑑𝑟
1

0

= [
1

4
𝑟4]

0

1

=
1

4
 . 

 

The outer integral is 

 

∫
1

4
 𝑑𝜃

2𝜋

0

=
1

4
∫ 𝑑𝜃

2𝜋

0

=
1

4
(2𝜋) =

1

2
𝜋. 
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Thus, we have “Flux through the base + Flux through the paraboloid = Flux 

through the entire object”: 

 

−2𝜋 + 𝑄 =
1

2
𝜋 

 

The flux through the paraboloid alone is 𝑄 =
5

2
𝜋. 

 

You can decide if it’s faster to determine the flux of the surface directly, or to 

try this method. 

 

 

 

 


