
Outline of the Proof of the Divergence Theorem 

 

Let 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑀(𝑥, 𝑦, 𝑧), 𝑁(𝑥, 𝑦, 𝑧), 𝑃(𝑥, 𝑦, 𝑧)〉 re a vector field in 𝑅3, and let S be a surface that encloses a 

subregion V of 𝑅3. Assume that this subregion is of finite volume, has no “tendrils” extending to infinity, has no 

interior hollows or voids, is connected (no “islands”), and is topologically well-behaved (has a distinct inside and 

outside, no odd behaviors such as the Klein 4-bottle (look it up)). 

 

In such a case, the flux of F through S can be calculated by a triple integral over V: 

 

∬ 𝐅 ⋅ 𝐧 𝑑𝑆
𝑆

= ∭ div 𝐅 𝑑𝑉
𝑉

. 

 

Consider a simple subregion of 𝑅3 as shown to the right. Relative 

to the xy-plane, this subregion is split in half at its equator, forming 

a top surface, 𝑧 = 𝑡(𝑥, 𝑦), and a bottom surface, 𝑧 = 𝑏(𝑥, 𝑦), each 

defined over a common region R in the xy-plane. 

 

Note that the normal vector n must point away from the interior. 

Thus, for the top surface, we have 𝐧 = 〈−𝑡𝑥, −𝑡𝑦, 1〉, and for the 

bottom surface, we have 𝐧 = 〈𝑏𝑥 , 𝑏𝑦, −1〉. 

 

 

 

 

 

Writing 𝐅(𝑥, 𝑦, 𝑧) in i-j-k form, we have 𝐅(𝑥, 𝑦, 𝑧) = 𝑀(𝑥, 𝑦, 𝑧)𝐢 + 𝑁(𝑥, 𝑦, 𝑧)𝐣 + 𝑃(𝑥, 𝑦, 𝑧)𝐤. The dot product 

with n gives: 

 

∬ 𝐅 ⋅ 𝐧 𝑑𝑆
𝑆

= ∬ (𝑀(𝑥, 𝑦, 𝑧)𝐢 + 𝑁(𝑥, 𝑦, 𝑧)𝐣 + 𝑃(𝑥, 𝑦, 𝑧)𝐤) ⋅ 𝐧 𝑑𝑆
𝑆

 

= ∬ (𝑀(𝑥, 𝑦, 𝑧)𝐢 ⋅ 𝐧 + 𝑁(𝑥, 𝑦, 𝑧)𝐣 ⋅ 𝐧 + 𝑃(𝑥, 𝑦, 𝑧)𝐤 ⋅ 𝐧)
𝑆

 𝑑𝑆. 

 

Look at each term one at a time. Start with the last one, ∬ 𝑃(𝑥, 𝑦, 𝑧)𝐤 ⋅ 𝐧 𝑑𝑆
𝑆

. First, split it into its top and bottom 

surfaces, where S is the union of t and b: 

 

∬ 𝑃(𝑥, 𝑦, 𝑧)𝐤 ⋅ 𝐧 𝑑𝑆
𝑆=𝑡∪𝑏

= ∬ 𝑃(𝑥, 𝑦, 𝑧)𝐤 ⋅ 𝐧 𝑑𝑆
𝑡

+ ∬ 𝑃(𝑥, 𝑦, 𝑧)𝐤 ⋅ 𝐧 𝑑𝑆
𝑏

. 

 

Now, replace the z’s in each integral and the normal vectors n with the forms involving t and b: 

 

∬ 𝑃(𝑥, 𝑦, 𝑡(𝑥, 𝑦))𝐤 ⋅ 〈−𝑡𝑥, −𝑡𝑦, 1〉 𝑑𝑦 𝑑𝑥
𝑡

+ ∬ 𝑃(𝑥, 𝑦, 𝑏(𝑥, 𝑦))𝐤 ⋅ 〈𝑏𝑥, 𝑏𝑦 , −1〉 𝑑𝑦 𝑑𝑥
𝑏

. 

 

 

 



Since these are defined over a common region R in the xy-plane, we can write this as one integral again: 

 

∬ [𝑃(𝑥, 𝑦, 𝑡(𝑥, 𝑦))𝐤 ⋅ 〈−𝑡𝑥, −𝑡𝑦, 1〉 + 𝑃(𝑥, 𝑦, 𝑏(𝑥, 𝑦))𝐤 ⋅ 〈𝑏𝑥, 𝑏𝑦, −1〉] 𝑑𝑦 𝑑𝑥
𝑅

. 

 

Now, perform the dot product. Note that only the k component is being “dotted” with the two n vectors. This 

gives 

∬ [𝑃(𝑥, 𝑦, 𝑡(𝑥, 𝑦)) − 𝑃(𝑥, 𝑦, 𝑏(𝑥, 𝑦))] 𝑑𝑦 𝑑𝑥
𝑅

. 

 

The expression 𝑃(𝑥, 𝑦, 𝑡(𝑥, 𝑦)) − 𝑃(𝑥, 𝑦, 𝑏(𝑥, 𝑦)) can be written as the result of an integral in which 𝑡(𝑥, 𝑦) was 

the top bound, 𝑏(𝑥, 𝑦) was the bottom bound, and the function 𝑃(𝑥, 𝑦, 𝑧) was the result of integrating 𝑃𝑧. Thus, 

“working backwards”, we have  

 

𝑃(𝑥, 𝑦, 𝑡(𝑥, 𝑦)) − 𝑃(𝑥, 𝑦, 𝑏(𝑥, 𝑦)) = ∫
𝜕𝑃

𝜕𝑧
 𝑑𝑧

𝑡(𝑥,𝑦)

𝑏(𝑥,𝑦)

. 

 

This means that  

 

∬ [𝑃(𝑥, 𝑦, 𝑡(𝑥, 𝑦)) − 𝑃(𝑥, 𝑦, 𝑏(𝑥, 𝑦))] 𝑑𝑦 𝑑𝑥
𝑅

= ∬ [∫
𝜕𝑃

𝜕𝑧
 𝑑𝑧

𝑡(𝑥,𝑦)

𝑏(𝑥,𝑦)

]  𝑑𝑦 𝑑𝑥
𝑅

. 

 

Simplified, the last integral is  

 

∭ 𝑃𝑧 𝑑𝑉
𝑉

. 

 

This shows that  

 

∬ 𝑃(𝑥, 𝑦, 𝑧)𝐤 ⋅ 𝐧 𝑑𝑆
𝑆

= ∭ 𝑃𝑧 𝑑𝑉
𝑉

. 

 

This process is repeated twice more by splitting the region relative to the xz and yz planes. This shows that 

 

∬ 𝑀(𝑥, 𝑦, 𝑧)𝐢 ⋅ 𝐧 𝑑𝑆
𝑆

= ∭ 𝑀𝑥 𝑑𝑉
𝑉

          𝑎𝑛𝑑          ∬ 𝑁(𝑥, 𝑦, 𝑧)𝐣 ⋅ 𝐧 𝑑𝑆
𝑆

= ∭ 𝑁𝑦 𝑑𝑉
𝑉

. 

 

Summing, we have 

 

∬ 𝐅 ⋅ 𝐧 𝑑𝑆
𝑆

= ∭ (𝑀𝑥 + 𝑁𝑦 + 𝑃𝑧) 𝑑𝑉
𝑉

= ∭ div 𝐅 𝑑𝑉
𝑉

. 

 

 


