Outline of the Proof of the Divergence Theorem

Let $\mathbf{F}(x, y, z)=\langle M(x, y, z), N(x, y, z), P(x, y, z)\rangle$ re a vector field in R^{3}, and let S be a surface that encloses a subregion V of R^{3}. Assume that this subregion is of finite volume, has no "tendrils" extending to infinity, has no interior hollows or voids, is connected (no "islands"), and is topologically well-behaved (has a distinct inside and outside, no odd behaviors such as the Klein 4-bottle (look it up)).

In such a case, the flux of \mathbf{F} through S can be calculated by a triple integral over V :

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{V} \operatorname{div} \mathbf{F} d V .
$$

Consider a simple subregion of R^{3} as shown to the right. Relative to the $x y$-plane, this subregion is split in half at its equator, forming a top surface, $z=t(x, y)$, and a bottom surface, $z=b(x, y)$, each defined over a common region R in the $x y$-plane.

Note that the normal vector \mathbf{n} must point away from the interior. Thus, for the top surface, we have $\mathbf{n}=\left\langle-t_{x},-t_{y}, 1\right\rangle$, and for the bottom surface, we have $\mathbf{n}=\left\langle b_{x}, b_{y},-1\right\rangle$.

Writing $\mathbf{F}(x, y, z)$ in i-j $\mathbf{j} \mathbf{k}$ form, we have $\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}$. The dot product with \mathbf{n} gives:

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S & =\iint_{S}(M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}) \cdot \mathbf{n} d S \\
& =\iint_{S}(M(x, y, z) \mathbf{i} \cdot \mathbf{n}+N(x, y, z) \mathbf{j} \cdot \mathbf{n}+P(x, y, z) \mathbf{k} \cdot \mathbf{n}) d S
\end{aligned}
$$

Look at each term one at a time. Start with the last one, $\iint_{S} P(x, y, z) \mathbf{k} \cdot \mathbf{n} d S$. First, split it into its top and bottom surfaces, where S is the union of t and b :

$$
\iint_{S=t \cup b} P(x, y, z) \mathbf{k} \cdot \mathbf{n} d S=\iint_{t} P(x, y, z) \mathbf{k} \cdot \mathbf{n} d S+\iint_{b} P(x, y, z) \mathbf{k} \cdot \mathbf{n} d S .
$$

Now, replace the z 's in each integral and the normal vectors \mathbf{n} with the forms involving t and b :

$$
\iint_{t} P(x, y, t(x, y)) \mathbf{k} \cdot\left\langle-t_{x},-t_{y}, 1\right\rangle d y d x+\iint_{b} P(x, y, b(x, y)) \mathbf{k} \cdot\left\langle b_{x}, b_{y},-1\right\rangle d y d x
$$

Since these are defined over a common region R in the $x y$-plane, we can write this as one integral again:

$$
\iint_{R}\left[P(x, y, t(x, y)) \mathbf{k} \cdot\left\langle-t_{x},-t_{y}, 1\right\rangle+P(x, y, b(x, y)) \mathbf{k} \cdot\left\langle b_{x}, b_{y},-1\right\rangle\right] d y d x
$$

Now, perform the dot product. Note that only the \mathbf{k} component is being "dotted" with the two \mathbf{n} vectors. This gives

$$
\iint_{R}[P(x, y, t(x, y))-P(x, y, b(x, y))] d y d x
$$

The expression $P(x, y, t(x, y))-P(x, y, b(x, y))$ can be written as the result of an integral in which $t(x, y)$ was the top bound, $b(x, y)$ was the bottom bound, and the function $P(x, y, z)$ was the result of integrating P_{z}. Thus, "working backwards", we have

$$
P(x, y, t(x, y))-P(x, y, b(x, y))=\int_{b(x, y)}^{t(x, y)} \frac{\partial P}{\partial z} d z
$$

This means that

$$
\iint_{R}[P(x, y, t(x, y))-P(x, y, b(x, y))] d y d x=\iint_{R}\left[\int_{b(x, y)}^{t(x, y)} \frac{\partial P}{\partial z} d z\right] d y d x
$$

Simplified, the last integral is

$$
\iiint_{V} P_{z} d V
$$

This shows that

$$
\iint_{S} P(x, y, z) \mathbf{k} \cdot \mathbf{n} d S=\iiint_{V} P_{z} d V
$$

This process is repeated twice more by splitting the region relative to the $x z$ and $y z$ planes. This shows that

$$
\iint_{S} M(x, y, z) \mathbf{i} \cdot \mathbf{n} d S=\iiint_{V} M_{x} d V \quad \text { and } \quad \iint_{S} N(x, y, z) \mathbf{j} \cdot \mathbf{n} d S=\iiint_{V} N_{y} d V
$$

Summing, we have

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{V}\left(M_{x}+N_{y}+P_{z}\right) d V=\iiint_{V} \operatorname{div} \mathbf{F} d V .
$$

