26. Directional Derivatives \& The Gradient

Given a multivariable function $z=f(x, y)$ and a point on the $x y$-plane $P_{0}=$ $\left(x_{0}, y_{0}\right)$ at which f is differentiable (it is smooth with no discontinuities, folds or corners), there are infinitely many directions (relative to the $x y$-plane) in which to sketch a tangent line to f at P_{0}. A directional derivative is the slope of a tangent line to f at P_{0} in which a unit direction vector $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ has been specified, and is given by the formula

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) u_{1}+f_{y}\left(x_{0}, y_{0}\right) u_{2}
$$

The right side of the equation can be viewed as the result of a dot product:

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)\right\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle
$$

The vector-valued function $\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)\right\rangle$ is called the gradient of f at $x=x_{0}$ and $y=y_{0}$, and is written $\nabla f\left(x_{0}, y_{0}\right)$. Thus, the directional derivative of f at P_{0} in the direction of \mathbf{u} is written in the shortened form

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \mathbf{u} .
$$

Example 26.1: Find $\nabla f(x, y)$, where $f(x, y)=x^{2} y+2 x y^{3}$.
Solution: Since $\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle$, we have

$$
\nabla f(x, y)=\left\langle 2 x y+2 y^{3}, x^{2}+6 x y^{2}\right\rangle
$$

Example 26.2: Find the slope of the tangent line of $f(x, y)=x^{2} y+2 x y^{3}$ at $x_{0}=-1, y_{0}=2$ in the direction of $\mathbf{u}=\langle 4,3\rangle$.

Solution: From the previous example, $\nabla f(x, y)=\left\langle 2 x y+2 y^{3}, x^{2}+6 x y^{2}\right\rangle$. When evaluated at $x_{0}=-1$ and $y_{0}=2$, we have

$$
\nabla f(-1,2)=\left\langle 2(-1)(2)+2(2)^{3},(-1)^{2}+6(-1)(2)^{2}\right\rangle=\langle 12,-23\rangle
$$

The direction \mathbf{u} is not a unit vector. Since $|\mathbf{u}|=\sqrt{4^{2}+3^{2}}=\sqrt{25}=5$, the unit vector in the direction of \mathbf{u} is $\left\langle\frac{4}{5}, \frac{3}{5}\right\rangle$. Thus,

$$
D_{\mathbf{u}} f(-1,2)=\langle 12,-23\rangle \cdot\left\langle\frac{4}{5}, \frac{3}{5}\right\rangle=12\left(\frac{4}{5}\right)-23\left(\frac{3}{5}\right)=-\frac{21}{5} .
$$

Example 26.3: Find the slope of the tangent line of $g(x, y)=\frac{x}{y^{2}}$ at $x_{0}=3$ and $y_{0}=5$, in the direction of the origin.

Solution: The vector from $(3,5)$ to $(0,0)$ is given by $\langle 0-3,0-5\rangle=\langle-3,-5\rangle$. Its magnitude is $\sqrt{(-3)^{2}+(-5)^{2}}=\sqrt{34}$. Thus, the unit direction vector is

$$
\mathbf{u}=\left\langle-\frac{3}{\sqrt{34}},-\frac{5}{\sqrt{34}}\right)
$$

The gradient of g is

$$
\nabla g(x, y)=\left\langle\frac{1}{y^{2}},-\frac{2 x}{y^{3}}\right\rangle
$$

Therefore,

$$
\nabla g(3,5)=\left\langle\frac{1}{(5)^{2}},-\frac{2(3)}{(5)^{3}}\right\rangle=\left\langle\frac{1}{25},-\frac{6}{125}\right\rangle .
$$

The slope of the tangent line of g at $x_{0}=3$ and $y_{0}=5$ in the direction of \mathbf{u} is

$$
\begin{aligned}
D_{\mathbf{u}} g(3,5) & =\left\langle\frac{1}{25},-\frac{6}{125}\right) \cdot\left\langle-\frac{3}{\sqrt{34}},-\frac{5}{\sqrt{34}}\right) \\
& =\left(\frac{1}{25}\right)\left(-\frac{3}{\sqrt{34}}\right)+\left(-\frac{6}{125}\right)\left(-\frac{5}{\sqrt{34}}\right) \\
& =-\frac{15}{125 \sqrt{34}}+\frac{30}{125 \sqrt{34}}=\frac{15}{125 \sqrt{34}} \approx 0.0206 .
\end{aligned}
$$

Example 26.4: Find the slope of the tangent line of $h(x, y)=\sqrt{1+x^{2}+y^{2}}$ where $P_{0}=(1,2)$ and the direction is given by a ray from P_{0} oriented at $\theta=\frac{\pi}{6}$ radians, relative to the positive x-direction.

Solution: The direction vector is given by $\mathbf{u}=\left\langle\cos \left(\frac{\pi}{6}\right), \sin \left(\frac{\pi}{6}\right)\right\rangle=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle$. It is a unit vector. The gradient of h is

$$
\nabla h(x, y)=\left\langle\frac{x}{\sqrt{1+x^{2}+y^{2}}}, \frac{y}{\sqrt{1+x^{2}+y^{2}}}\right\rangle
$$

Upon substitution,

$$
\nabla h(1,2)=\left\langle\frac{(1)}{\sqrt{1+(1)^{2}+(2)^{2}}}, \frac{(2)}{\sqrt{1+(1)^{2}+(2)^{2}}}\right\rangle=\left\langle\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right\rangle
$$

The directional derivative of h at $(1,2)$ in the direction of \mathbf{u} is

$$
\begin{aligned}
D_{\mathbf{u}} h(1,2) & =\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \cdot\left\langle\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right\rangle \\
& =\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{6}}\right)+\left(\frac{1}{2}\right)\left(\frac{2}{\sqrt{6}}\right) \\
& =\frac{\sqrt{3}+2}{2 \sqrt{6}} \approx 0.762 .
\end{aligned}
$$

Directional derivatives can be extended into higher dimensions.
Example 26.5: Find the slope of the tangent line of $f(x, y, z)=x y^{2} z^{3}$ when $x_{0}=2, y_{0}=1$ and $z_{0}=3$ in the direction of $\langle 2,4,-5\rangle$.

Solution: The gradient of f is

$$
\nabla f(x, y, z)=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle
$$

At (2,1,3), we have

$$
\nabla f(2,1,3)=\langle 27,108,54\rangle
$$

The unit direction vector is $\mathbf{u}=\left\langle\frac{2}{\sqrt{45}}, \frac{4}{\sqrt{45}},-\frac{5}{\sqrt{45}}\right\rangle$. The slope of the tangent line of f at $(2,1,3)$ in the direction of \mathbf{u} is

$$
\begin{aligned}
D_{\mathbf{u}} f(2,1,3) & =\nabla f(2,1,3) \cdot \mathbf{u} \\
& =\langle 27,108,54\rangle \cdot\left\langle\frac{2}{\sqrt{45}}, \frac{4}{\sqrt{45}},-\frac{5}{\sqrt{45}}\right) \\
& =\frac{54}{\sqrt{45}}+\frac{432}{\sqrt{45}}-\frac{270}{\sqrt{45}} \approx 32.2 .
\end{aligned}
$$

Using the cosine form of the formula for the dot product of two vectors, $\mathbf{u} \cdot \mathbf{v}=$ $|\mathbf{u}||\mathbf{v}| \cos \theta$, we can rewrite $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \mathbf{u}$ as

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\left|\nabla f\left(x_{0}, y_{0}\right)\right||\mathbf{u}| \cos \theta
$$

Since \mathbf{u} is a unit vector, then $|\mathbf{u}|=1$, so that

$$
\left|\nabla f\left(x_{0}, y_{0}\right)\right||\mathbf{u}| \cos \theta=\left|\nabla f\left(x_{0}, y_{0}\right)\right| \cos \theta
$$

where θ is the angle between the gradient vector at $\left(x_{0}, y_{0}\right)$, and the direction vector \mathbf{u}. From this, we can infer that $\left|\nabla f\left(x_{0}, y_{0}\right)\right| \cos \theta$ is maximized when $\nabla f\left(x_{0}, y_{0}\right)$ and \mathbf{u} are parallel, or when $\theta=0$ (so that $\cos \theta=1$). This leads to a significant result in directional derivatives.

Given a function $z=f(x, y)$ and a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$:

- The direction of steepest ascent at P_{0} is given by $\nabla f\left(x_{0}, y_{0}\right)=$ $\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)\right\rangle$. In this case, it is permissible to state the direction as a non-unit vector.
- The slope of steepest ascent at P_{0} is given by $\left|\nabla f\left(x_{0}, y_{0}\right)\right|$.
- The direction of steepest descent at P_{0} is opposite the direction of steepest ascent, and is given by $-\nabla f\left(x_{0}, y_{0}\right)=\left\langle-f_{x}\left(x_{0}, y_{0}\right),-f_{y}\left(x_{0}, y_{0}\right)\right\rangle$.
- The slope of steepest descent at P_{0} is $-\left|\nabla f\left(x_{0}, y_{0}\right)\right|$.

A path that follows the directions of steepest ascent is called a gradient path and is always orthogonal to the contours of the surface.

Example 26.6: Let $f(x, y)=x^{2}+2 x y^{2}$. State the direction(s) in which the slope of the tangent line at $x_{0}=2$ and $y_{0}=1$ is 0 .

Solution: We have $\nabla f(x, y)=\left\langle 2 x+2 y^{2}, 4 x y\right\rangle$. Let $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$. We have

$$
\begin{aligned}
D_{\mathbf{u}} f(2,1) & =\nabla f(2,1) \cdot \mathbf{u} \\
& =\langle 6,8\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle \\
& =6 u_{1}+8 u_{2} .
\end{aligned}
$$

If the slope is to be 0 , we set $6 u_{1}+8 u_{2}=0$. Thus, whenever $u_{2}=-\frac{3}{4} u_{1}$, then the slope of the tangent line at $x_{0}=2$ and $y_{0}=1$ will be 0 .

Example 26.7: Find the direction of steepest ascent of $f(x, y)=x^{2} y+2 x y^{3}$ at $x_{0}=-1$ and $y_{0}=2$, then find the slope of steepest ascent.

Solution: From Example 26.2, we have $\nabla f(x, y)=\left\langle 2 x y+2 y^{3}, x^{2}+6 x y^{2}\right\rangle$ so that $\nabla f(-1,2)=\langle 12,-23\rangle$. This is the direction of steepest ascent. The slope of steepest ascent is $|\langle 12,-23\rangle|=\sqrt{12^{2}+(-23)^{2}} \approx 25.94$.

When finding a directional derivative where the direction is stated or to be determined, you must be sure that it is stated as a unit vector. However, when asked to find a direction of steepest ascent, it is permissible to leave it as a nonunit vector since you will likely be calculating the slope as well. While it is not incorrect to state the direction of steepest ascent as a unit vector, a common error is to then use that unit vector to find the slope, in which case the answer will be 1 , which is likely incorrect.

Example 26.8: Suppose the slope of the tangent line of $z=f(x, y)$ at $P_{0}=$ $\left(x_{0}, y_{0}\right)$ in the direction of $\langle 3,1\rangle$ is $\sqrt{10}$, and that the slope of the tangent line at the same point in the direction of $\langle 1,4\rangle$ is $\frac{18}{\sqrt{17}}$. What is the direction of steepest ascent of f at P_{0}, and what is the slope in this direction?

Solution: We don't know f, but we can treat the components in its gradient, $\nabla f\left(x_{0}, y_{0}\right)=\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)\right\rangle$, as a pair of unknowns. In the direction of $\langle 3,1\rangle$, the slope of the tangent line is $\sqrt{10}$. Considering the unit direction vector $\mathbf{u}=\left\langle\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right\rangle$, we have $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \mathbf{u}=\sqrt{10}$. Thus, we have

$$
\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)\right\rangle \cdot\left\langle\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right\rangle=\sqrt{10}
$$

which gives

$$
\begin{equation*}
f_{x}\left(x_{0}, y_{0}\right) \frac{3}{\sqrt{10}}+f_{y}\left(x_{0}, y_{0}\right) \frac{1}{\sqrt{10}}=\sqrt{10} \tag{1}
\end{equation*}
$$

In a similar way, we consider the unit direction vector in the direction of $\langle 1,4\rangle$, which is $\left\langle\frac{1}{\sqrt{17}}, \frac{4}{\sqrt{17}}\right\rangle$. The slope in this direction is $\frac{18}{\sqrt{17}}$. We have

$$
\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)\right\rangle \cdot\left\langle\frac{1}{\sqrt{17}}, \frac{4}{\sqrt{17}}\right\rangle=\frac{18}{\sqrt{17}}
$$

which gives

$$
\begin{equation*}
f_{x}\left(x_{0}, y_{0}\right) \frac{1}{\sqrt{17}}+f_{y}\left(x_{0}, y_{0}\right) \frac{4}{\sqrt{17}}=\frac{18}{\sqrt{17}} \tag{2}
\end{equation*}
$$

Taking equations (1) and (2) together, we have a system of two unknowns in two equations:

$$
\begin{aligned}
& f_{x}\left(x_{0}, y_{0}\right) \frac{3}{\sqrt{10}}+f_{y}\left(x_{0}, y_{0}\right) \frac{1}{\sqrt{10}}=\sqrt{10} \\
& f_{x}\left(x_{0}, y_{0}\right) \frac{1}{\sqrt{17}}+f_{y}\left(x_{0}, y_{0}\right) \frac{4}{\sqrt{17}}=\frac{18}{\sqrt{17}}
\end{aligned}
$$

The first equation is multiplied by $\sqrt{10}$, and the second by $\sqrt{17}$ to clear fractions:

$$
\begin{aligned}
& f_{x}\left(x_{0}, y_{0}\right)(3)+f_{y}\left(x_{0}, y_{0}\right)(1)=10 \\
& f_{x}\left(x_{0}, y_{0}\right)(1)+f_{y}\left(x_{0}, y_{0}\right)(4)=18 .
\end{aligned}
$$

The bottom equation is multiplied by -3 :

$$
\begin{aligned}
f_{x}\left(x_{0}, y_{0}\right)(3)+f_{y}\left(x_{0}, y_{0}\right)(1) & =10 \\
f_{x}\left(x_{0}, y_{0}\right)(-3)+f_{y}\left(x_{0}, y_{0}\right)(-12) & =-54
\end{aligned}
$$

Adding the second equation to the first, we have $-11 f_{y}\left(x_{0}, y_{0}\right)=-44$. Thus, $f_{y}\left(x_{0}, y_{0}\right)=4$. Substituting this into either of the equations (1) or (2), we find that $f_{x}\left(x_{0}, y_{0}\right)=2$. Therefore, we now know $\nabla f\left(x_{0}, y_{0}\right)$, which is $\langle 2,4\rangle$. This is the direction of steepest ascent of f. The slope at P_{0} in this direction is $\sqrt{2^{2}+4^{2}}=\sqrt{20}=2 \sqrt{5} \approx 4.47$.

Example 26.9: A plane tilts to the north at a 6% grade - that is, for every 100 feet one moves horizontally north, he or she will gain 6 feet vertically. Find the slope and the grade if someone walks to the northeast.

Solution: Assume the plane passes through the origin, assuming also that the y axis is north and south, and the x-axis is east and west, in the usual map orientation. When $y=100$, we have $z=6$, so that another ordered triple on the plane is $(0,100,6)$. Thus, we can write $z=\frac{6}{100} y=0.06 y$ as the equation of the plane. The gradient of f is $\nabla f(x, y)=\langle 0,0.06\rangle$. Note that x is an independent variable but has no effect on the values of z. If it helps, write the plane as $z=$ $0 x+0.06 y$.

Furthermore, at the origin, we still have $\nabla f(0,0)=\langle 0,0.06\rangle$. Meanwhile, movement to the northeast can be modeled by the vector $\langle 1,1\rangle$, or as a unit vector, $\mathbf{u}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$.

The slope at the origin in the direction of northeast is given by

$$
\begin{aligned}
D_{\mathbf{u}} f(0,0) & =\nabla f(0,0) \cdot \mathbf{u} \\
& =\langle 0,0.06\rangle \cdot\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \\
& =\frac{0.06}{\sqrt{2}} \approx 0.0424
\end{aligned}
$$

The grade can be inferred by the fact that 1 foot of movement in the northeast direction results in a rise of 0.0424 feet vertically. Thus, the grade is about 4.24\%.

Note that a movement east or west would result in no change in z. The directional derivative in either direction (the positive or negative x direction) is 0 . Let $\mathbf{u}=\langle 1,0\rangle$ or $\langle-1,0\rangle$ and verify that the directional derivative would be 0 .

