## Calculus-III Directional Derivatives Practice Problems.

Answers are not included. You are encouraged to work together and post ideas and comments on Piazza.
Example: Find the slope of the tangent line to $f(x, y)=x^{3}-x y^{2}$ at $x_{0}=2$ and $y_{0}=5$ in the direction of $\mathbf{v}=$ $\langle 4,7\rangle$.

Solution: The direction must be a unit vector:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\left\langle\frac{4}{\sqrt{65}}, \frac{7}{\sqrt{65}}\right\rangle
$$

Thus, the components are $u_{1}=\frac{4}{\sqrt{65}}$ and $u_{2}=\frac{7}{\sqrt{65}}$.
Now, differentiate and evaluate at the given $x$ and $y$ values:

$$
\begin{array}{cc}
f_{x}(x, y)=3 x^{2}-y^{2} & f_{x}(2,5)=3(2)^{2}-(5)^{2}=-13 \\
f_{y}(x, y)=-2 x y & f_{y}(2,5)=-2(2)(5)=-20
\end{array}
$$

The general form of the directional derivative is

$$
D_{u} f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) u_{1}+f_{y}\left(x_{0}, y_{0}\right) u_{2}
$$

Assemble your ingredients:

$$
D_{u} f(2,5)=-13\left(\frac{4}{\sqrt{65}}\right)+(-20)\left(\frac{7}{\sqrt{65}}\right)=-\frac{192}{\sqrt{65}} \approx-23.814 \ldots
$$

This is a very steep negative (downward) slope.
Be careful! The direction can be expressed multiple ways. Please read each problem carefully.

1. Find the slope of the tangent line to $f(x, y)=2 x+y^{4}$ at $x_{0}=1$ and $y_{0}=3$ in the direction of $\mathbf{v}=\langle 2,1\rangle$.
2. Find the slope of the tangent line to $f(x, y)=x^{3} y^{2}$ at $x_{0}=-1$ and $y_{0}=4$ in the direction of $\mathbf{v}=\langle 5,12\rangle$.
3. Find the slope of the tangent line to $f(x, y)=\left(x+2 y^{2}\right)^{2}$ at $x_{0}=2$ and $y_{0}=-3$ in the direction of $\mathbf{v}=$ $\langle 7,24\rangle$.
4. Find the slope of the tangent line to $f(x, y)=\sqrt{x^{2}+y^{4}}$ at $x_{0}=3$ and $y_{0}=1$ in the direction of the point $(5,7)$.
5. Find the slope of the tangent line to $f(x, y)=6-x^{2}+x y-y^{2}$ at $x_{0}=4$ and $y_{0}=2$ in the direction of the point $(7,1)$.
6. Find the slope of the tangent line to $f(x, y)=x e^{y}$ at $x_{0}=4$ and $y_{0}=\ln 5$ in the direction of the origin.
7. Find the slope of the tangent line to $f(x, y)=\frac{x+6 y^{2}}{y^{3}}$ at $x_{0}=1$ and $y_{0}=3$ in the direction that is opposite the origin.
8. Find the slope of the tangent line to $f(x, y)=2 x+3 y+y^{4}$ at $x_{0}=0$ and $y_{0}=2$ in the direction of a ray that has an angle of $\frac{\pi}{3}$ radians relative to the positive $x$-direction.
9. Find the slope of the tangent line to $f(x, y)=5 x+2 y-10$ at $x_{0}=2$ and $y_{0}=5$ in the northeast direction (using the usual orientation from a map)
10. Find the slope of the tangent line to $f(x, y)=x^{2} y^{3} z^{4}$ at $x_{0}=2, y_{0}=1$ and $z_{0}=-3$ in the direction of $\mathbf{v}=\langle 5,1,3\rangle$.

## Gradients

The gradient of $f(x, y)$ is $\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle$. It is a vector-valued function.
On any smooth and continuous (differentiable) surface, the gradient at $x_{0}$ and $y_{0}$ always points in the direction of maximum increase. This direction need not be a unit vector.

The magnitude of the gradient, $\left|\nabla f\left(x_{0}, y_{0}\right)\right|$, is the slope of the maximum increase. It is a scalar.

The direction of maximum decrease and its slope arte just the negations of the gradient and its magnitude.
Example: Find the direction and the slope of maximum ascent for $f(x, y)=x^{3}-x y^{2}$ at $x_{0}=2$ and $y_{0}=5$.
Solution: The gradient is

$$
\nabla f(x, y)=\left\langle 3 x^{2}-y^{2},-2 x y\right\rangle
$$

Evaluated at the given coordinates, we have

$$
\nabla f(2,5)=\langle-13,-20\rangle
$$

This is the direction of maximum increase. The slope is the magnitude:

$$
m=|\langle-13,-20\rangle|=\sqrt{(-13)^{2}+(-20)^{2}}=\sqrt{569} \approx 23.8537 \ldots
$$

Problems: Find the direction and the slope of maximum increase (ascent) for the functions and the points given in \#1-10 of the previous set of problems on this sheet.

