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52. The Del Operator: Divergence and Curl 
 
Let 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑀(𝑥, 𝑦, 𝑧), 𝑁(𝑥, 𝑦, 𝑧), 𝑃(𝑥, 𝑦, 𝑧)〉 be a vector field in 𝑅3. The 

del operator is represented by the symbol ∇, and is written 

 

∇ = ⟨
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
⟩ , or         ∇ = 〈𝜕𝑥 , 𝜕𝑦 , 𝜕𝑧〉. 

 

By itself, the del operator is meaningless. It must be combined with a vector 

field F via a dot product or cross product to be meaningful. For example, the del 

operator can be combined with a vector field F as a dot product: 

 

∇ ⋅ 𝐅 = ⟨
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
⟩ ⋅ 𝐅(𝑥, 𝑦, 𝑧) 

= ⟨
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
⟩ ⋅ 〈𝑀(𝑥, 𝑦, 𝑧), 𝑁(𝑥, 𝑦, 𝑧), 𝑃(𝑥, 𝑦, 𝑧)〉 

=
𝜕

𝜕𝑥
𝑀(𝑥, 𝑦, 𝑧) +

𝜕

𝜕𝑦
𝑁(𝑥, 𝑦, 𝑧) +

𝜕

𝜕𝑧
𝑃(𝑥, 𝑦, 𝑧) 

 

This is called the divergence of F, and is written shorthand as div 𝐅 = ∇ ⋅ 𝐅 =
𝑀𝑥 + 𝑁𝑦 + 𝑃𝑧 .  In 𝑅2, we have div 𝐅 = ∇ ⋅ 𝐅 = 𝑀𝑥 + 𝑁𝑦. 

 

div F is a scalar function. 

 

The del operator can also be combined with F as a cross product: 

 

∇ × 𝐅 = |
𝐢 𝐣 𝐤

𝜕𝑥 𝜕𝑦 𝜕𝑧

𝑀 𝑁 𝑃

| = (𝑃𝑦 − 𝑁𝑧)𝐢 − (𝑃𝑥 − 𝑀𝑧)𝐣 + (𝑁𝑥 − 𝑀𝑦)𝐤. 

 

This is called the curl of F, and is written shorthand as  

 

curl 𝐅 = ∇ × 𝐅 = 〈𝑃𝑦 − 𝑁𝑧 , 𝑀𝑧 − 𝑃𝑥 , 𝑁𝑥 − 𝑀𝑦〉. 

 

curl F is a vector field. 

 

The second component, 𝑀𝑧 − 𝑃𝑥, is simplified slightly by distributing the 

leading negative. Also note that the third component, 𝑁𝑥 − 𝑀𝑦, is the integrand 

for Green’s Theorem. Thus, we will see that Green’s Theorem is a special case 

of a higher-dimension analog called Stokes’ Theorem that uses curl F. 
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Example 52.1: Given 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑥𝑦2, 𝑥2𝑦𝑧2, 2𝑥𝑧4〉, find div F and curl F. 

 

Solution: For div F, we have 

 

div 𝐅 = ∇ ⋅ 𝐅 

= 𝑀𝑥 + 𝑁𝑦 + 𝑃𝑧 

= 𝑦2 + 𝑥2𝑧2 + 8𝑥𝑧3. 

 

For curl F, we have 

 

curl 𝐅 = ∇ × 𝐅 

= 〈𝑃𝑦 − 𝑁𝑧 , 𝑀𝑧 − 𝑃𝑥 , 𝑁𝑥 − 𝑀𝑦〉 

= 〈0 − 2𝑥2𝑦𝑧, 0 − 2𝑧4, 2𝑥𝑦𝑧2 − 𝑦2〉 

= 〈−2𝑥2𝑦𝑧, −2𝑧4, 2𝑥𝑦𝑧2 − 𝑦2〉. 

 

 •  •  •  •  

 

Example 52.2: Given 𝐅(𝑥, 𝑦, 𝑧) = 〈2𝑦, 𝑥𝑧, 𝑥 + 2𝑦〉, find div F and curl F. 

 

Solution: For div F, we have 

 

div 𝐅 = ∇ ⋅ 𝐅 

= 𝑀𝑥 + 𝑁𝑦 + 𝑃𝑧 

= 0 + 0 + 0 = 0. 

 

For curl F, we have 

 

curl 𝐅 = ∇ × 𝐅 

= 〈𝑃𝑦 − 𝑁𝑧 , 𝑀𝑧 − 𝑃𝑥 , 𝑁𝑥 − 𝑀𝑦〉 

= 〈2 − 𝑥, −1, 𝑧 − 2〉. 

 

When div F = 0, the vector field is incompressible. 

 

 •  •  •  •  

 

Be careful with the syntax when using the symbol ∇. If 𝑓 is a scalar function, 

then ∇𝑓 is the gradient of 𝑓. If F is a vector field, then ∇ ⋅ 𝐅 is the divergence of 

F, and ∇ × 𝐅 is the curl of F. However, statements like ∇𝐅 and ∇ ⋅ 𝑓 have no 

meaning.  On the other hand, statements like ∇ ⋅ ∇𝑓, ∇ × ∇𝑓 and ∇ ⋅ (∇ × 𝐅) are 

well-defined. 
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Example 52.3: Given 𝐅(𝑥, 𝑦, 𝑧) = 〈2𝑥𝑦𝑧3, 𝑥2𝑧3, 3𝑥2𝑦𝑧2〉, find div F and curl 

F. 

 

Solution: For div F, we have 

 

div 𝐅 = ∇ ⋅ 𝐅 

= 𝑀𝑥 + 𝑁𝑦 + 𝑃𝑧 

= 2𝑦𝑧3 + 6𝑥2𝑦𝑧.      (Note that 𝑁𝑦 = 0) 

 

For curl F, we have 

 

curl 𝐅 = ∇ × 𝐅 

= 〈𝑃𝑦 − 𝑁𝑧 , 𝑀𝑧 − 𝑃𝑥 , 𝑁𝑥 − 𝑀𝑦〉 

= 〈3𝑥2𝑧2 − 3𝑥2𝑧2, 6𝑥𝑦𝑧2 − 6𝑥𝑦𝑧2, 2𝑥𝑧3 − 2𝑥𝑧3〉 

= 〈0,0,0〉 = 𝟎. 

 

When curl F = 0, the vector field is irrotational. 

 

 •  •  •  •  

 

Example 52.4: Given 𝐅(𝑥, 𝑦, 𝑧) = 〈2,1, −4〉, find div F and curl F. 

 

Solution: For div F, we have 

 

div 𝐅 = ∇ ⋅ 𝐅 

= 𝑀𝑥 + 𝑁𝑦 + 𝑃𝑧 

= 0. 

 

For curl F, we have 

 

curl 𝐅 = ∇ × 𝐅 

= 〈𝑃𝑦 − 𝑁𝑧 , 𝑀𝑧 − 𝑃𝑥 , 𝑁𝑥 − 𝑀𝑦〉 

= 〈0 − 0,0 − 0,0 − 0〉 

= 〈0,0,0〉 = 𝟎. 

 

A constant vector field is both incompressible (div F = 0)  

and irrotational (curl F = 0). 
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The divergence operator is used to show (quantify) how a vector field flows 

through a region bounded by permeable membranes. The region can then be 

made as small as we desire, down to a point. Thus, divergence can show the 

existences of a source (where, roughly speaking, the flow radiates away from 

the point), or a sink (where a flow collects into a point). 

 

If the divergence of a vector field F is 0, then there are no sources nor sinks in 

F. If a certain amount of mass flows into a region, then the same amount must 

flow away from the region in order to maintain the balance, and thus, the flow 

is incompressible. The flow of fluid, as modeled by a vector field F, is a good 

example of an incompressible field. It is not possible to compress an idealized 

fluid. On the other hand, heat or gasses can be compressed, allowing for sources 

and/or sinks. 

 

The curl operator is used to show (quantify) the tendency for the vector field F 

to create “spin”, and this spin is defined around a vector representing the axis of 

spin, at any given point. Thus, in a vector field F, there is super-imposed another 

vector field, curl F, which consists of vectors that serve as axes of rotation for 

any possible “spinning” within F. In a physical sense, “spin” creates circulation, 

and curl F is often used to show how a vector field might induce a current 

through a wire or loop immersed within that field. If curl F = 0, then the vector 

field F induces no spin (or circulation). 

 

Curl can be defined on a vector field within 𝑅2, as shown below: 

 

 •  •  •  •  

 

Example 52.5: Given 𝐅(𝑥, 𝑦) = 〈𝑥𝑦, 2𝑥2〉. Find curl F. 

 

Solution: Rewrite F to include a third component of 0: 

 

𝐅(𝑥, 𝑦, 𝑧) = 〈𝑥𝑦, 2𝑥2, 0〉. 
 

Thus, 

 

curl 𝐅 = ∇ × 𝐅 

= 〈𝑃𝑦 − 𝑁𝑧 , 𝑀𝑧 − 𝑃𝑥 , 𝑁𝑥 − 𝑀𝑦〉 

= 〈0,0, 𝑁𝑥 − 𝑀𝑦〉 

= 〈0,0,3𝑥〉. 
 

A vector field F confined to the xy-plane (𝑅2) may induce a spin, and if so, all 

axes of rotations point into the third dimension, orthogonal to the xy-plane. At 

each point within some bounded region in 𝑅2, there may be a spin. While some 

spins may cancel others, the net result will be evident at the boundary, where 

such spins then induce a current around that boundary. 
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Curl F may also be used to show if F is conservative. In general, if curl F = 0, 

then F is (usually) conservative. We then find a possible potential function 

𝜙(𝑥, 𝑦, 𝑧) such that ∇𝜙 = 𝐅. 

 

Example 52.6: Given 𝐅(𝑥, 𝑦, 𝑧) = 〈2𝑥𝑦𝑧3, 𝑥2𝑧3, 3𝑥2𝑦𝑧2〉, show that curl F = 

0, and find a potential function 𝜙(𝑥, 𝑦, 𝑧) such that ∇𝜙 = 𝐅. 

 

Solution: From an earlier example, we showed that curl F = 0: 

 

curl 𝐅 = ∇ × 𝐅 

= 〈𝑃𝑦 − 𝑁𝑧 , 𝑀𝑧 − 𝑃𝑥 , 𝑁𝑥 − 𝑀𝑦〉 

= 〈3𝑥2𝑧2 − 3𝑥2𝑧2, 6𝑥𝑦𝑧2 − 6𝑥𝑦𝑧2, 2𝑥𝑧3 − 2𝑥𝑧3〉 

= 〈0,0,0〉 = 𝟎. 

 

This suggests that F is probably conservative. We seek a potential function by 

antidifferentiating M with respect to x, N with respect to y, and P with respect 

to z, and examining the results: 

 

∫ 2𝑥𝑦𝑧3 𝑑𝑥 = 𝑥2𝑦𝑧3; ∫ 𝑥2𝑧3 𝑑𝑦 = 𝑥2𝑦𝑧3; ∫ 3𝑥2𝑦𝑧2 𝑑𝑧 = 𝑥2𝑦𝑧3. 

 

Observe that all three antiderivatives result in 𝑥2𝑦𝑧3. We check by showing that 

∇𝑥2𝑦𝑧3 = 𝐅. It is, and thus, 𝜙(𝑥, 𝑦, 𝑧) = 𝑥2𝑦𝑧3 is a potential function of F, so 

that F is a conservative vector field in 𝑅3.  In this case, F is also called a 

gradient vector field. 

 

In general, if a function 𝑓(𝑥, 𝑦, 𝑧) has continuous second-order derivatives over 

the relevant domain, then ∇𝑓 is a gradient vector field, and curl ∇𝑓 = ∇ × ∇𝑓 =
𝟎. 

 

Furthermore, if given 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑀(𝑥, 𝑦, 𝑧), 𝑁(𝑥, 𝑦, 𝑧), 𝑃(𝑥, 𝑦, 𝑧)〉 and 

assuming M, N and P have continuous first-ordered partial derivatives, then div 

curl F = ∇ ⋅ (∇ × 𝐅) = 0. 

 

 •  •  •  •  

 

Example 52.7: Given 𝐅(𝑥, 𝑦, 𝑧) = 〈𝑥𝑦2, 𝑥2𝑦𝑧2, 2𝑥𝑧4〉, verify that div curl F = 

0. 

 

Solution: From an earlier example, curl F = 〈−2𝑥2𝑦𝑧, −2𝑧4, 2𝑥𝑦𝑧2 − 𝑦2〉. 
Thus, 

∇ ⋅ (∇ × 𝐅)  =
𝜕

𝜕𝑥
(−2𝑥2𝑦𝑧) +

𝜕

𝜕𝑦
(−2𝑧4) +

𝜕

𝜕𝑧
(2𝑥𝑦𝑧2 − 𝑦2) 

= −4𝑥𝑦𝑧 + 0 + 4𝑥𝑧𝑦 

= 0. 
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Example 52.8: Find ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

, where 

 

𝐅(𝑥, 𝑦, 𝑧) = ⟨
2𝑥

𝑧
,
1

𝑧
, −

𝑥2 + 𝑦

𝑧2
⟩, 

 

and C is is a line segment from (2,1,3) to (4,4,4), then another line segment from 

(4,4,4) to (5,7,6). 

 

Solution: It is possible that F is a conservative (gradient) vector field. We find 

curl F: 

 

curl 𝐅 = 〈𝑃𝑦 − 𝑁𝑧 , 𝑀𝑧 − 𝑃𝑥 , 𝑁𝑥 − 𝑀𝑦〉 

= 〈−
1

𝑧2
− (−

1

𝑧2
) , −

2𝑥

𝑧2
− (−

2𝑥

𝑧2
) , 0 − 0〉 

= 〈0,0,0〉 = 𝟎. 

 

Since curl F = 0, then F is likely conservative. We now find 𝜙(𝑥, 𝑦, 𝑧) such that 

∇𝜙 = 𝐅. We antidifferentiate M with respect to x, N with respect to y, and P 

with respect to z, and examine the results: 

 

∫
2𝑥

𝑧
 𝑑𝑥 =

𝑥2

𝑧
; ∫

1

𝑧
 𝑑𝑦 =

𝑦

𝑧
; ∫ (−

𝑥2 + 𝑦

𝑧2
)  𝑑𝑧 =

𝑥2 + 𝑦

𝑧
. 

 

The union of these terms is  

 

𝜙(𝑥, 𝑦, 𝑧) =
𝑥2 + 𝑦

𝑧
 . 

 

This is a potential function since 𝜙𝑥 = 𝑀 =
2𝑥

𝑧
, 𝜙𝑦 = 𝑁 =

1

𝑧
, and 𝜙𝑧 = 𝑃 =

−
𝑥2+𝑦

𝑧2 .  

 

Thus, the line integral can be determined by using the Fundamental Theorem of 

Line Integrals, and avoiding the need to parameterize the line segments: 

 

∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= [
𝑥2 + 𝑦

𝑧
]

(2,1,3)

(5,7,6)

 

= (
(5)2 + (7)

(6)
) − (

(2)2 + (1)

(3)
) 

=
32

6
−

5

3
=

11

3
 . 
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Visualizing Divergence 

 

To see divergence at a point, visualize a small box around that point, then infer 

whether more mass is entering into this box than leaving, more is leaving the 

box than entering, or equal amounts are flowing into and out of the box. For 

example, suppose a point P, shown below, is located within a vector field 

represented by arrows: 

 

 
 

A box is drawn around P, and we see that the vectors “entering” from the left 

are the same magnitude as those “leaving” to the right. If we scale the box down 

and assume a similar behavior of the vector field for these smaller boxes, then 

it is reasonable to infer that in this case, there are equal amounts of material 

entering as leaving. Thus, there is no divergence at P. 

 

In the image below, the arrows differ in magnitude, but it is still evident that 

there are equal amounts of material entering as leaving. There is no divergence 

at P. 

 

 
 

In the next image, it appears more material is entering than is leaving. Thus, at 

P, there is negative divergence, and P is a sink. 

 

 
 

In this image, more material is leaving than is entering, so at P, there is positive 

divergence and P is a source: 

 

 
 

 

 

 

 

 

Visualizing Curl 
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Curl is the tendency of a vector field to cause a spin at a point, the spin rotating 

around an axis of revolution. However, when viewing a vector field, “seeing” 

curl is not as obvious. It should not be confused with any apparent “curviness” 

of a vector field. A fluid may flow along a non-straight line path, yet have no 

curl. 

 

To see evidence of curl at a point P, look for vectors that seem to shear (face 

opposite directions) near P, or look for any concentric behavior of the flow lines. 

However, even this won’t strongly indicate curl. 

 

For example, in the image below, there is probably a non-zero curl vector at P. 

Note the opposing directions of the vector field. 

 

 
 

In the next image, there is probably non-zero curl at P as well: 

 

 
 

However, in the next image, there is possibly no curl (zero curl) at P: 

 

 
 

The formula for curl F allows us to definitively quantify the curl at any given 

point, which is helpful since viewing it from an image of a vector field may be 

difficult. 
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The following are examples of vector fields and their divergence and curl: 

 

 
 

𝐅(𝑥, 𝑦) = 〈1,2〉 
div 𝐅 = 0 

curl 𝐅 = 𝟎. 
 

Constant vector fields have no divergence and no curl. 

 

 

 

 

 

 
 

𝐅(𝑥, 𝑦) = 〈𝑥, 𝑦〉 

div 𝐅 = 2 

curl 𝐅 = 𝟎. 
 

All vectors emanate away from the origin and grow in magnitude. Draw a small 

box anywhere and note that more mass is moving “out” than entering “in”. All 

points in the plane are considered “sources”. Divergence is positive. There is no 

rotation, so curl is 0. 
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𝐅(𝑥, 𝑦) = 〈𝑦, −𝑥〉 
div 𝐅 = 0 

curl 𝐅 = 〈0,0, −2〉. 
 

This field has no divergence, but it does have curl. Since curl is negative, the 

spin is clockwise, and the curl vectors point in the negative z direction (“into” 

the page). 

 

 

 

 

 
 

𝐅(𝑥, 𝑦) = 〈𝑥 + 𝑦, 𝑦 − 𝑥〉 
div 𝐅 = 2 

curl 𝐅 = 〈0,0, −2〉. 
 

There is divergence at all points: draw a small box anywhere and note that more 

mass is moving “out” than entering “in”. There is also curl: note the general 

clockwise “spiral” nature of the vector field. A point anywhere in the plane 

would be compelled to spin. 

 

 


