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47. Conservative Vector Fields 
 
Given a function 𝑧 = 𝜙(𝑥, 𝑦), its gradient is ∇𝜙 = 〈𝜙𝑥, 𝜙𝑦〉. Thus, ∇𝜙 is a 

gradient (or conservative) vector field, and the function 𝜙 is called a potential 

function. 

 

Suppose we are given the vector field first, in the form 𝐅(𝑥, 𝑦) =
〈𝑀(𝑥, 𝑦), 𝑁(𝑥, 𝑦)〉. Can we show that this is a conservative vector field? Recall 

that 𝜙𝑥𝑦 = 𝜙𝑦𝑥 is true by Clairaut’s Theorem. Assuming such a function 𝜙 

exists, we infer that 𝜙𝑥 = 𝑀 and that 𝜙𝑦 = 𝑁, and observing that 𝜙𝑥𝑦 = 𝜙𝑦𝑥, 

this is equivalent to showing that 𝑀𝑦 = 𝑁𝑥. In other words, if 𝜙 exists, then 

𝑀𝑦 = 𝑁𝑥, and if 𝑀𝑦 = 𝑁𝑥 is true, then 𝜙 exists. (The exceptions to this property 

are rare and not relevant to this discussion). 

 

To summarize, if given a vector field 𝐅(𝑥, 𝑦) = 〈𝑀(𝑥, 𝑦), 𝑁(𝑥, 𝑦)〉, then two 

cases result: 

 

• If 𝑀𝑦 = 𝑁𝑥, then F is conservative, and there exists a potential function 𝜙. 

• If 𝑀𝑦 ≠ 𝑁𝑥, then F is not conservative and no such potential function 𝜙 exists. 

 

         

 

Example 47.1: Determine if 𝐅(𝑥, 𝑦) = 〈3𝑥2𝑦2, 2𝑥3𝑦〉 is conservative. If it is, 

find a potential function 𝜙(𝑥, 𝑦) such that ∇𝜙 = 𝐅. 

 

Solution: From F, we have 𝑀(𝑥, 𝑦) = 3𝑥2𝑦2 and 𝑁(𝑥, 𝑦) = 2𝑥3𝑦. We find 𝑀𝑦 

and 𝑁𝑥: 

 

𝑀𝑦 = 6𝑥2𝑦     and     𝑁𝑥 = 6𝑥2𝑦. 

 

Since 𝑀𝑦 = 𝑁𝑥, then F is conservative, and there exists a function 𝜙(𝑥, 𝑦) such 

that 𝜙𝑥 = 3𝑥2𝑦2 and 𝜙𝑦 = 2𝑥3𝑦. Since we assume that 𝜙𝑥 = 3𝑥2𝑦2, we 

integrate it with respect to x: 

 

∫ 3𝑥2𝑦2 𝑑𝑥 = 𝑥3𝑦2 + 𝑔(𝑦). 

 

Here, 𝑔(𝑦) represents a possible term in variable y, noting that under 

differentiation with respect to x, 
𝜕

𝜕𝑥
𝑔(𝑦) = 0. Now differentiate this result with 

respect to y: 

 
𝜕

𝜕𝑦
(𝑥3𝑦2 + 𝑔(𝑦)) = 2𝑥3𝑦 + 𝑔′(𝑦). 
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This is compared to 𝑁(𝑥, 𝑦) = 2𝑥3𝑦: 

 

2𝑥3𝑦 + 𝑔′(𝑦) = 2𝑥3𝑦. 
 

This suggests 𝑔′(𝑦) = 0 so that integrating, 𝑔(𝑦) = 𝑘, a constant. Thus, the 

potential function has the form 𝜙(𝑥, 𝑦) = 𝑥3𝑦2 + 𝑘. In such cases, any 

constants are set to 0. This leaves  

 

𝜙(𝑥, 𝑦) = 𝑥3𝑦2 

 

as a potential function of F. This is easily checked by showing that 𝜙𝑥 = 3𝑥2𝑦2 

and 𝜙𝑦 = 2𝑥3𝑦. 

 

         

 

Example 47.2: Determine if 𝐅(𝑥, 𝑦) = 〈𝑥𝑦, 1 − 𝑥2〉 is conservative. If it is, find 

the potential function 𝜙(𝑥, 𝑦) such that ∇𝜙 = 𝐅. 

 

Solution: We have 𝑀(𝑥, 𝑦) = 𝑥𝑦 and 𝑁(𝑥, 𝑦) = 1 − 𝑥2. Observe that 𝑀𝑦 = 𝑥 

and 𝑁𝑥 = −2𝑥. Since 𝑀𝑦 ≠ 𝑁𝑥, vector field F is not conservative, and there 

does not exist a function whose gradient is F. 

 

         

 

Example 47.3: Determine if 𝐅(𝑥, 𝑦) = 〈𝑦 − 3, 𝑥 + 2〉 is conservative. If it is, 

find a potential function 𝜙. 

 

Solution: We have 𝑀(𝑥, 𝑦) = 𝑦 − 3 and 𝑁(𝑥, 𝑦) = 𝑥 + 2. Observe that 𝑀𝑦 =

1 and 𝑁𝑥 = 1. Since 𝑀𝑦 = 𝑁𝑥, the vector field F is conservative. To determine 

𝜙(𝑥, 𝑦), we first integrate 𝑀(𝑥, 𝑦) with respect to x: 

 

∫(𝑦 − 3) 𝑑𝑥 = 𝑥𝑦 − 3𝑥 + 𝑔(𝑦). 

 

Differentiating this result with respect to y, we have  

 
𝜕

𝜕𝑦
(𝑥𝑦 − 3𝑥 + 𝑔(𝑦)) = 𝑥 + 𝑔′(𝑦). 

 

This is compared to 𝑁(𝑥, 𝑦) = 𝑥 + 2: 

 

𝑥 + 𝑔′(𝑦) = 𝑥 + 2. 
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Thus, 𝑔′(𝑦) = 2, so that 𝑔(𝑦) = 2𝑦 + 𝑘 (any constants of integration can be 

set to 0). A potential function is  

 

𝜙(𝑥, 𝑦) = 𝑥𝑦 − 3𝑥 + 2𝑦, 
 

which we check by showing that ∇𝜙(𝑥, 𝑦) = 𝐅(𝑥, 𝑦): 

 

𝜙𝑥(𝑥, 𝑦) = 𝑦 − 3, 𝜙𝑦(𝑥, 𝑦) = 𝑥 + 2. 

 

These are precisely the components of F, so ∇𝜙(𝑥, 𝑦) = 𝐅(𝑥, 𝑦). 

 

         

 

Given a conservative vector field 𝐅(𝑥, 𝑦) = 〈𝑀(𝑥, 𝑦), 𝑁(𝑥, 𝑦)〉, a “shortcut” to 

find a potential function 𝜙(𝑥, 𝑦) is to integrate 𝑀(𝑥, 𝑦) with respect to x, and 

𝑁(𝑥, 𝑦) with respect to y, and to form the union of the terms in each 

antiderivative. However, check that the alleged potential function’s partial 

derivatives with respect to x, and respect to y, do give M and N, respectively. 

 

Example 47.4: Given the conservative vector field 𝐅(𝑥, 𝑦) = 〈3𝑥2𝑦2, 2𝑥3𝑦〉, 

find a potential function, 𝜙(𝑥, 𝑦). 

 

Solution: Integrate 𝑀(𝑥, 𝑦) = 3𝑥2𝑦2 with respect to x, and 𝑁(𝑥, 𝑦) = 2𝑥3𝑦 

with respect to y: 

 

∫ 3𝑥2𝑦2 𝑑𝑥 = 𝑥3𝑦2 and ∫ 2𝑥3𝑦 𝑑𝑦 = 𝑥3𝑦2. 

 

Observing the two antiderivatives, we infer that 𝜙(𝑥, 𝑦) = 𝑥3𝑦2 may be a 

potential function. A check that 𝜙𝑥 = 𝑀(𝑥, 𝑦) = 3𝑥2𝑦2 and 𝜙𝑦 = 𝑁(𝑥, 𝑦) =

2𝑥3𝑦 shows that this function is a correct potential function. Any constants of 

integration can be ignored. 

 

         

 

Example 47.5: Given the conservative vector field  

 

𝐅(𝑥, 𝑦) = 〈3𝑥2 + 2𝑦, 2𝑥 − 2𝑦〉, 

 

find the potential function, 𝜙(𝑥, 𝑦). 

 

Solution: Integrate 3𝑥2 + 2𝑦 with respect to x, and 2𝑥 − 2𝑦 with respect to y: 

 

∫(3𝑥2 + 2𝑦) 𝑑𝑥 = 𝑥3 + 2𝑥𝑦 and ∫(2𝑥 − 2𝑦) 𝑑𝑦 = 2𝑥𝑦 − 𝑦2. 
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The union of terms from these two antiderivatives is 𝜙(𝑥, 𝑦) = 𝑥3 + 2𝑥𝑦 − 𝑦2. 

We check that this is actually a potential function: 𝜙𝑥 = 3𝑥2 + 2𝑦 = 𝑀(𝑥, 𝑦), 

and 𝜙𝑦 = 2𝑥 − 2𝑦 = 𝑁(𝑥, 𝑦). Thus, this is a correct potential function. 

 

         

 

Example 47.6: A student is given the vector field 𝐅(𝑥, 𝑦) = 〈𝑥2, 𝑥𝑦〉. He then 

integrates 𝑥2 with respect to x, getting ∫ 𝑥2 𝑑𝑥 =
1

3
𝑥3, and integrates 𝑥𝑦 with 

respect to y, getting ∫ 𝑥𝑦 𝑑𝑦 =
1

2
𝑥𝑦2. He concludes that the potential function 

is 𝜙(𝑥, 𝑦) =
1

3
𝑥3 +

1

2
𝑥𝑦2. Explain the error. 

 

Solution: Vector field F is not conservative since 𝑀𝑦 ≠ 𝑁𝑥. Thus, there is no 

potential function that generates F. Note that the alleged potential function, 

𝜙(𝑥, 𝑦) =
1

3
𝑥3 +

1

2
𝑥𝑦2, does not generate F since 𝜙𝑥 = 𝑥2 +

1

2
𝑦2, which is not 

equal to 𝑥2. In other words, ∇𝜙 ≠ 𝐅. 

 

         

 

Vector fields in 𝑅3 can also be conservative, where 𝑤 = 𝜙(𝑥, 𝑦, 𝑧) is a potential 

function of a vector field ∇𝜙 = 𝐅(𝑥, 𝑦, 𝑧) = 〈𝜙𝑥, 𝜙𝑦, 𝜙𝑧〉. However, showing 

that a vector field F in 𝑅3 is conservative is found by showing that curl F = 0. 

The curl of a vector field is discussed in Section 52. 

 

 
See an error? Have a suggestion? 

Please see www.surgent.net/vcbook  
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48. Fundamental Theorem of Line Integrals 
 

If F is a conservative vector field in 𝑅2 with 𝜙(𝑥, 𝑦) as its potential function, 

and C is a directed path with endpoints 𝑎 = (𝑥0, 𝑦0) and 𝑏 = (𝑥1, 𝑦1), then  

 

∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= [𝜙(𝑥, 𝑦)]𝑎
𝑏  

= 𝜙(𝑏) − 𝜙(𝑎) 

= 𝜙(𝑥1, 𝑦1) − 𝜙(𝑥0, 𝑦0). 

 

This is called the Fundamental Theorem of Line Integrals (FTLI). In this 

case, there is no need to parametrize the path, as the value of the line integral 

depends only on the potential function evaluated at the endpoints, then 

subtracted in the usual manner of integration. 

 

A couple of corollaries follow: 

 

• Line integrals in a conservative vector field are path independent, meaning 

that any path from a to b will result in the same value of the line integral.  

 

• If the path C is a simple loop, meaning it starts and ends at the same point and 

does not cross itself, and F is a conservative vector field, then the line integral 

is 0. 

 

         

 

Example 48.1: Evaluate ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

, where 𝐅(𝑥, 𝑦) = 〈3𝑥2𝑦2, 2𝑥3𝑦〉 and C is the 

line segment from a = (1,2) to b = (4, –3).  

 

Solution: From a previous example, we showed that F is conservative, and that 

a potential function is 𝜙(𝑥, 𝑦) = 𝑥3𝑦2. Therefore, 

 

∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= [𝑥3𝑦2](1,2)
(4,−3)

 

= (4)3(−3)2 − (1)3(2)2 

= 576 − 4 = 572. 

Note that we did not actually parametrize the line segment to solve this line 

integral. 
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Example 48.2: Evaluate ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

, where 𝐅(𝑥, 𝑦) = 〈2𝑥, 3𝑦〉 and C is any path 

from a = (1,0) to b = (0,1). 

 

Solution: Let’s try a few common paths. Suppose C is a line from a to b. We 

have 𝐫(𝑡) = 〈1 − 𝑡, 𝑡〉, where 0 ≤ 𝑡 ≤ 1. Thus, 𝐫′(𝑡) = 〈−1,1〉 and 𝐅(𝑡) =
〈2(1 − 𝑡), 3𝑡〉. The line integral is 

 

∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= ∫ 〈2(1 − 𝑡), 3𝑡〉 ⋅ 〈−1,1〉
1

0

 𝑑𝑡 

= ∫ (5𝑡 − 2) 𝑑𝑡
1

0

 

= [
5

2
𝑡2 − 2𝑡]

0

1

 

=
5

2
− 2 

=
1

2
 . 

 

Now suppose C is a quarter circle, centered at the origin, with radius 1. It is 

parametrized as 𝐫(𝑡) = 〈cos 𝑡 , sin 𝑡〉, where 0 ≤ 𝑡 ≤
𝜋

2
. As a result, 𝐫′(𝑡) =

〈− sin 𝑡 , cos 𝑡〉 and 𝐅(𝑡) = 〈2 cos 𝑡 , 3 sin 𝑡〉. The line integral is 

 

∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= ∫ 〈2 cos 𝑡 , 3 sin 𝑡〉 ⋅ 〈− sin 𝑡 , cos 𝑡〉 𝑑𝑡
𝜋 2⁄

0

 

= ∫ sin 𝑡 cos 𝑡 𝑑𝑡
𝜋 2⁄

0

 

= [
1

2
sin2 𝑡]

0

𝜋 2⁄

         {
Letting 𝑢 = sin 𝑡          
so that 𝑑𝑢 = cos 𝑡  𝑑𝑡.

 

=
1

2
 . 

 

Suppose C is a parabola 𝑥 = 1 − 𝑦2. It is parametrized as 𝐫(𝑡) = 〈1 − 𝑡2, 𝑡〉, 
where 0 ≤ 𝑡 ≤ 1. Thus, 𝐫′(𝑡) = 〈−2𝑡, 1〉 and 𝐅(𝑡) = 〈2(1 − 𝑡2),3𝑡〉. The line 

integral is 

 

∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= ∫ 〈2(1 − 𝑡2), 3𝑡〉 ⋅ 〈−2𝑡, 1〉 𝑑𝑡
1

0
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= ∫ (4𝑡3 − 𝑡) 𝑑𝑡
1

0

 

= [𝑡4 −
1

2
𝑡2]

0

1

 

= 1 −
1

2
 

=
1

2
 . 

 

It appears that regardless the path, the line integral is ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

=
1

2
. Although 

three examples are not a “proof” that this assertion is true, it suggests that it 

might be worth approaching the problem from a different perspective. 

 

Observe that the vector field F is conservative: 𝑀(𝑥, 𝑦) = 2𝑥, so that 𝑀𝑦 = 0, 

and 𝑁(𝑥, 𝑦) = 3𝑦, so that 𝑁𝑥 = 0. A potential function is 𝜙(𝑥, 𝑦) = 𝑥2 +
3

2
𝑦2 

(You should verify this). Thus, using the Fundamental Theorem of Line 

Integrals, we have 

 

∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= [𝑥2 +
3

2
𝑦2]

(1,0)

(0,1)

 

= ((0)2 +
3

2
(1)2) − ((1)2 +

3

2
(0)2) 

=
3

2
− 1 

=
1

2
 . 

 

This example illustrates that in a conservative vector field, the line integral along 

any path between two fixed endpoints will always give the same result. Rather 

than try many different paths, it’s easier to first check whether F is conservative. 

If it is, then skip the parametrization step entirely, and proceed to finding a 

potential function and using the Fundamental Theorem of Line Integrals. 

 

         

 

Example 48.3:  Evaluate ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

, where 𝐅(𝑥, 𝑦) = 〈𝑦, 𝑥 + 2𝑦〉 and C is a 

sequence of line segments from (1,3) to (2,7) to (–4,0) to (8,2). 

 

Solution: We check first to see if F is conservative: 𝑀𝑦 = 1 and 𝑁𝑥 = 1. Since 

𝑀𝑦 = 𝑁𝑥, then F is conservative, and it is not necessary to parametrize the 
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sequence of line segments. Instead, we find 𝜙 and evaluate it by using the 

Fundamental Theorem of Line Integrals. We need a potential function. Note that  

 

∫ 𝑦 𝑑𝑥 = 𝑥𝑦 and ∫(𝑥 + 2𝑦) 𝑑𝑦 = 𝑥𝑦 + 𝑦2. 

 

Thus, 𝜙(𝑥, 𝑦) = 𝑥𝑦 + 𝑦2 is the (probable) potential function. We check by 

finding ∇𝜙: 𝜙𝑥 = 𝑦 and 𝜙𝑦 = 𝑥 + 2𝑦. These are M and N, respectively, so 

𝜙(𝑥, 𝑦) = 𝑥𝑦 + 𝑦2 is a correct potential function. Therefore, 

 

∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= [𝑥𝑦 + 𝑦2](1,3)
(8,2)

 

= ((8)(2) + (2)2) − ((1)(3) + (3)2) 

= 20 − 12 

= 8. 

All of the intermediate points were ignored. We only needed the starting and 

ending point of the path. 

 

         

 

Example 48.4:  Evaluate ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

, where 𝐅(𝑥, 𝑦) = 〈2𝑥, 3𝑦2〉 and C is given 

by 𝐫(𝑡) = 〈𝑡2, 5𝑡〉 for −1 ≤ 𝑡 ≤ 3. 

 

Solution: Note that 𝑀𝑦 = 0 and that 𝑁𝑥 = 0. Since 𝑀𝑦 = 𝑁𝑥, then F is 

conservative, and that 𝜙(𝑥, 𝑦) = 𝑥2 + 𝑦3 is the potential function. Since F is 

conservative, the actual path of C is not relevant. We just need its two endpoints. 

When 𝑡 = −1, we have 𝐫(−1) = 〈(−1)2, 5(−1)〉 = 〈1, −5〉, and when 𝑡 = 3, 

we have 𝐫(3) = 〈(3)2, 5(3)〉 = 〈9,15〉. Note that 〈1, −5〉 and 〈9,15〉 are vectors, 

but if their feet are placed at the origin, then their heads point to the ordered 

pairs (1, –5) and (9,15). In this way, the point as ordered pairs can be inferred 

from a vector. 

 

Therefore, we have 

 

∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= [𝑥2 + 𝑦3](1,−5)
(9,15)

= ((9)2 + (15)3) − ((1)2 + (−5)3) = 3580. 
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Example 48.5: The contour map of 𝑧 = 𝑓(𝑥, 𝑦) is below, for −4 ≤ 𝑥 ≤ 4 and 

−4 ≤ 𝑦 ≤ 4. Suppose that vector field 𝐅(𝑥, 𝑦) = ∇𝑓(𝑥, 𝑦). 

 

 
 

Evaluate the following: 

 

a) ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

, where C is any path from (2,–1) to (–3,1). 

b) ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

, where C is any path from (–1,0) to (–2,3), then to (3,4) 

c) ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

, where C is a circle of radius 2, centered at the origin. 

 

Solution:  

 

a) Since 𝐅(𝑥, 𝑦) = ∇𝑓(𝑥, 𝑦), then 𝑓 is a potential function of the vector 

field F, and F is conservative. Thus, F is path-independent, and only 

the starting and ending points of C are relevant. Note that from the 

contour map, we have 𝑧 = 𝑓(2, −1) = 20 as the starting point, and 

𝑧 = 𝑓(−3,1) = 35 as the ending point. By the Fundamental Theorem 

of Line Integrals, we have 

 

∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= [𝑓(𝑥, 𝑦)](2,−1)
(−3,1)

 

= 𝑓(−3,1) − 𝑓(2, −1) 

= 35 − 20 

= 15. 

b) Because F is conservative, only the starting and ending points of the 

path are relevant. Note that 𝑓(−1,0) = 30 and that 𝑓(3,4) = 30. Thus, 

∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= 30 − 30 = 0. 

c) Since F is a conservative vector field and C is a closed simple loop, 

then ∫ 𝐅 ⋅ 𝑑𝐫
𝐶

= 0. 


